Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+\sqrt{7}\right)\left(3+\sqrt{7}\right)}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}-\frac{3-\sqrt{7}}{3+2\sqrt{7}}
Rationalize the denominator of \frac{3+\sqrt{7}}{3-\sqrt{7}} by multiplying numerator and denominator by 3+\sqrt{7}.
\frac{\left(3+\sqrt{7}\right)\left(3+\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}-\frac{3-\sqrt{7}}{3+2\sqrt{7}}
Consider \left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+\sqrt{7}\right)\left(3+\sqrt{7}\right)}{9-7}-\frac{3-\sqrt{7}}{3+2\sqrt{7}}
Square 3. Square \sqrt{7}.
\frac{\left(3+\sqrt{7}\right)\left(3+\sqrt{7}\right)}{2}-\frac{3-\sqrt{7}}{3+2\sqrt{7}}
Subtract 7 from 9 to get 2.
\frac{\left(3+\sqrt{7}\right)^{2}}{2}-\frac{3-\sqrt{7}}{3+2\sqrt{7}}
Multiply 3+\sqrt{7} and 3+\sqrt{7} to get \left(3+\sqrt{7}\right)^{2}.
\frac{9+6\sqrt{7}+\left(\sqrt{7}\right)^{2}}{2}-\frac{3-\sqrt{7}}{3+2\sqrt{7}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{7}\right)^{2}.
\frac{9+6\sqrt{7}+7}{2}-\frac{3-\sqrt{7}}{3+2\sqrt{7}}
The square of \sqrt{7} is 7.
\frac{16+6\sqrt{7}}{2}-\frac{3-\sqrt{7}}{3+2\sqrt{7}}
Add 9 and 7 to get 16.
8+3\sqrt{7}-\frac{3-\sqrt{7}}{3+2\sqrt{7}}
Divide each term of 16+6\sqrt{7} by 2 to get 8+3\sqrt{7}.
8+3\sqrt{7}-\frac{\left(3-\sqrt{7}\right)\left(3-2\sqrt{7}\right)}{\left(3+2\sqrt{7}\right)\left(3-2\sqrt{7}\right)}
Rationalize the denominator of \frac{3-\sqrt{7}}{3+2\sqrt{7}} by multiplying numerator and denominator by 3-2\sqrt{7}.
8+3\sqrt{7}-\frac{\left(3-\sqrt{7}\right)\left(3-2\sqrt{7}\right)}{3^{2}-\left(2\sqrt{7}\right)^{2}}
Consider \left(3+2\sqrt{7}\right)\left(3-2\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
8+3\sqrt{7}-\frac{\left(3-\sqrt{7}\right)\left(3-2\sqrt{7}\right)}{9-\left(2\sqrt{7}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
8+3\sqrt{7}-\frac{\left(3-\sqrt{7}\right)\left(3-2\sqrt{7}\right)}{9-2^{2}\left(\sqrt{7}\right)^{2}}
Expand \left(2\sqrt{7}\right)^{2}.
8+3\sqrt{7}-\frac{\left(3-\sqrt{7}\right)\left(3-2\sqrt{7}\right)}{9-4\left(\sqrt{7}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
8+3\sqrt{7}-\frac{\left(3-\sqrt{7}\right)\left(3-2\sqrt{7}\right)}{9-4\times 7}
The square of \sqrt{7} is 7.
8+3\sqrt{7}-\frac{\left(3-\sqrt{7}\right)\left(3-2\sqrt{7}\right)}{9-28}
Multiply 4 and 7 to get 28.
8+3\sqrt{7}-\frac{\left(3-\sqrt{7}\right)\left(3-2\sqrt{7}\right)}{-19}
Subtract 28 from 9 to get -19.
8+3\sqrt{7}-\frac{9-6\sqrt{7}-3\sqrt{7}+2\left(\sqrt{7}\right)^{2}}{-19}
Apply the distributive property by multiplying each term of 3-\sqrt{7} by each term of 3-2\sqrt{7}.
8+3\sqrt{7}-\frac{9-9\sqrt{7}+2\left(\sqrt{7}\right)^{2}}{-19}
Combine -6\sqrt{7} and -3\sqrt{7} to get -9\sqrt{7}.
8+3\sqrt{7}-\frac{9-9\sqrt{7}+2\times 7}{-19}
The square of \sqrt{7} is 7.
8+3\sqrt{7}-\frac{9-9\sqrt{7}+14}{-19}
Multiply 2 and 7 to get 14.
8+3\sqrt{7}-\frac{23-9\sqrt{7}}{-19}
Add 9 and 14 to get 23.
8+3\sqrt{7}-\frac{-23+9\sqrt{7}}{19}
Multiply both numerator and denominator by -1.
\frac{19\left(8+3\sqrt{7}\right)}{19}-\frac{-23+9\sqrt{7}}{19}
To add or subtract expressions, expand them to make their denominators the same. Multiply 8+3\sqrt{7} times \frac{19}{19}.
\frac{19\left(8+3\sqrt{7}\right)-\left(-23+9\sqrt{7}\right)}{19}
Since \frac{19\left(8+3\sqrt{7}\right)}{19} and \frac{-23+9\sqrt{7}}{19} have the same denominator, subtract them by subtracting their numerators.
\frac{152+57\sqrt{7}+23-9\sqrt{7}}{19}
Do the multiplications in 19\left(8+3\sqrt{7}\right)-\left(-23+9\sqrt{7}\right).
\frac{175+48\sqrt{7}}{19}
Do the calculations in 152+57\sqrt{7}+23-9\sqrt{7}.