Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

17x-4y+3z=-6+12x 19y-8x=10+20z+15y-10x 7+6y+4z=4x+5
Multiply each equation by the least common multiple of denominators in it. Simplify.
x=\frac{4}{5}y-\frac{3}{5}z-\frac{6}{5}
Solve 17x-4y+3z=-6+12x for x.
19y-8\left(\frac{4}{5}y-\frac{3}{5}z-\frac{6}{5}\right)=10+20z+15y-10\left(\frac{4}{5}y-\frac{3}{5}z-\frac{6}{5}\right) 7+6y+4z=4\left(\frac{4}{5}y-\frac{3}{5}z-\frac{6}{5}\right)+5
Substitute \frac{4}{5}y-\frac{3}{5}z-\frac{6}{5} for x in the second and third equation.
y=\frac{31}{14}+\frac{53}{14}z z=-\frac{17}{16}-\frac{7}{16}y
Solve these equations for y and z respectively.
z=-\frac{17}{16}-\frac{7}{16}\left(\frac{31}{14}+\frac{53}{14}z\right)
Substitute \frac{31}{14}+\frac{53}{14}z for y in the equation z=-\frac{17}{16}-\frac{7}{16}y.
z=-\frac{13}{17}
Solve z=-\frac{17}{16}-\frac{7}{16}\left(\frac{31}{14}+\frac{53}{14}z\right) for z.
y=\frac{31}{14}+\frac{53}{14}\left(-\frac{13}{17}\right)
Substitute -\frac{13}{17} for z in the equation y=\frac{31}{14}+\frac{53}{14}z.
y=-\frac{81}{119}
Calculate y from y=\frac{31}{14}+\frac{53}{14}\left(-\frac{13}{17}\right).
x=\frac{4}{5}\left(-\frac{81}{119}\right)-\frac{3}{5}\left(-\frac{13}{17}\right)-\frac{6}{5}
Substitute -\frac{81}{119} for y and -\frac{13}{17} for z in the equation x=\frac{4}{5}y-\frac{3}{5}z-\frac{6}{5}.
x=-\frac{9}{7}
Calculate x from x=\frac{4}{5}\left(-\frac{81}{119}\right)-\frac{3}{5}\left(-\frac{13}{17}\right)-\frac{6}{5}.
x=-\frac{9}{7} y=-\frac{81}{119} z=-\frac{13}{17}
The system is now solved.