Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\times 2x+5\times 7y=180
Consider the first equation. Multiply both sides of the equation by 60, the least common multiple of 15,12.
8x+5\times 7y=180
Multiply 4 and 2 to get 8.
8x+35y=180
Multiply 5 and 7 to get 35.
16\times 7x-25\times 5y=60
Consider the second equation. Multiply both sides of the equation by 400, the least common multiple of 25,16,20.
112x-25\times 5y=60
Multiply 16 and 7 to get 112.
112x-125y=60
Multiply -25 and 5 to get -125.
8x+35y=180,112x-125y=60
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8x+35y=180
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
8x=-35y+180
Subtract 35y from both sides of the equation.
x=\frac{1}{8}\left(-35y+180\right)
Divide both sides by 8.
x=-\frac{35}{8}y+\frac{45}{2}
Multiply \frac{1}{8} times -35y+180.
112\left(-\frac{35}{8}y+\frac{45}{2}\right)-125y=60
Substitute -\frac{35y}{8}+\frac{45}{2} for x in the other equation, 112x-125y=60.
-490y+2520-125y=60
Multiply 112 times -\frac{35y}{8}+\frac{45}{2}.
-615y+2520=60
Add -490y to -125y.
-615y=-2460
Subtract 2520 from both sides of the equation.
y=4
Divide both sides by -615.
x=-\frac{35}{8}\times 4+\frac{45}{2}
Substitute 4 for y in x=-\frac{35}{8}y+\frac{45}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-35+45}{2}
Multiply -\frac{35}{8} times 4.
x=5
Add \frac{45}{2} to -\frac{35}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=5,y=4
The system is now solved.
4\times 2x+5\times 7y=180
Consider the first equation. Multiply both sides of the equation by 60, the least common multiple of 15,12.
8x+5\times 7y=180
Multiply 4 and 2 to get 8.
8x+35y=180
Multiply 5 and 7 to get 35.
16\times 7x-25\times 5y=60
Consider the second equation. Multiply both sides of the equation by 400, the least common multiple of 25,16,20.
112x-25\times 5y=60
Multiply 16 and 7 to get 112.
112x-125y=60
Multiply -25 and 5 to get -125.
8x+35y=180,112x-125y=60
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}8&35\\112&-125\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}180\\60\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}8&35\\112&-125\end{matrix}\right))\left(\begin{matrix}8&35\\112&-125\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&35\\112&-125\end{matrix}\right))\left(\begin{matrix}180\\60\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}8&35\\112&-125\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&35\\112&-125\end{matrix}\right))\left(\begin{matrix}180\\60\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&35\\112&-125\end{matrix}\right))\left(\begin{matrix}180\\60\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{125}{8\left(-125\right)-35\times 112}&-\frac{35}{8\left(-125\right)-35\times 112}\\-\frac{112}{8\left(-125\right)-35\times 112}&\frac{8}{8\left(-125\right)-35\times 112}\end{matrix}\right)\left(\begin{matrix}180\\60\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{984}&\frac{7}{984}\\\frac{14}{615}&-\frac{1}{615}\end{matrix}\right)\left(\begin{matrix}180\\60\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{984}\times 180+\frac{7}{984}\times 60\\\frac{14}{615}\times 180-\frac{1}{615}\times 60\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\4\end{matrix}\right)
Do the arithmetic.
x=5,y=4
Extract the matrix elements x and y.
4\times 2x+5\times 7y=180
Consider the first equation. Multiply both sides of the equation by 60, the least common multiple of 15,12.
8x+5\times 7y=180
Multiply 4 and 2 to get 8.
8x+35y=180
Multiply 5 and 7 to get 35.
16\times 7x-25\times 5y=60
Consider the second equation. Multiply both sides of the equation by 400, the least common multiple of 25,16,20.
112x-25\times 5y=60
Multiply 16 and 7 to get 112.
112x-125y=60
Multiply -25 and 5 to get -125.
8x+35y=180,112x-125y=60
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
112\times 8x+112\times 35y=112\times 180,8\times 112x+8\left(-125\right)y=8\times 60
To make 8x and 112x equal, multiply all terms on each side of the first equation by 112 and all terms on each side of the second by 8.
896x+3920y=20160,896x-1000y=480
Simplify.
896x-896x+3920y+1000y=20160-480
Subtract 896x-1000y=480 from 896x+3920y=20160 by subtracting like terms on each side of the equal sign.
3920y+1000y=20160-480
Add 896x to -896x. Terms 896x and -896x cancel out, leaving an equation with only one variable that can be solved.
4920y=20160-480
Add 3920y to 1000y.
4920y=19680
Add 20160 to -480.
y=4
Divide both sides by 4920.
112x-125\times 4=60
Substitute 4 for y in 112x-125y=60. Because the resulting equation contains only one variable, you can solve for x directly.
112x-500=60
Multiply -125 times 4.
112x=560
Add 500 to both sides of the equation.
x=5
Divide both sides by 112.
x=5,y=4
The system is now solved.