Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

108x+110y=100800
Consider the first equation. Multiply both sides of the equation by 100.
\frac{11}{10}x+\frac{108}{100}y=1028
Consider the second equation. Reduce the fraction \frac{110}{100} to lowest terms by extracting and canceling out 10.
\frac{11}{10}x+\frac{27}{25}y=1028
Reduce the fraction \frac{108}{100} to lowest terms by extracting and canceling out 4.
108x+110y=100800,\frac{11}{10}x+\frac{27}{25}y=1028
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
108x+110y=100800
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
108x=-110y+100800
Subtract 110y from both sides of the equation.
x=\frac{1}{108}\left(-110y+100800\right)
Divide both sides by 108.
x=-\frac{55}{54}y+\frac{2800}{3}
Multiply \frac{1}{108} times -110y+100800.
\frac{11}{10}\left(-\frac{55}{54}y+\frac{2800}{3}\right)+\frac{27}{25}y=1028
Substitute -\frac{55y}{54}+\frac{2800}{3} for x in the other equation, \frac{11}{10}x+\frac{27}{25}y=1028.
-\frac{121}{108}y+\frac{3080}{3}+\frac{27}{25}y=1028
Multiply \frac{11}{10} times -\frac{55y}{54}+\frac{2800}{3}.
-\frac{109}{2700}y+\frac{3080}{3}=1028
Add -\frac{121y}{108} to \frac{27y}{25}.
-\frac{109}{2700}y=\frac{4}{3}
Subtract \frac{3080}{3} from both sides of the equation.
y=-\frac{3600}{109}
Divide both sides of the equation by -\frac{109}{2700}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{55}{54}\left(-\frac{3600}{109}\right)+\frac{2800}{3}
Substitute -\frac{3600}{109} for y in x=-\frac{55}{54}y+\frac{2800}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{11000}{327}+\frac{2800}{3}
Multiply -\frac{55}{54} times -\frac{3600}{109} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{105400}{109}
Add \frac{2800}{3} to \frac{11000}{327} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{105400}{109},y=-\frac{3600}{109}
The system is now solved.
108x+110y=100800
Consider the first equation. Multiply both sides of the equation by 100.
\frac{11}{10}x+\frac{108}{100}y=1028
Consider the second equation. Reduce the fraction \frac{110}{100} to lowest terms by extracting and canceling out 10.
\frac{11}{10}x+\frac{27}{25}y=1028
Reduce the fraction \frac{108}{100} to lowest terms by extracting and canceling out 4.
108x+110y=100800,\frac{11}{10}x+\frac{27}{25}y=1028
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}108&110\\\frac{11}{10}&\frac{27}{25}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100800\\1028\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}108&110\\\frac{11}{10}&\frac{27}{25}\end{matrix}\right))\left(\begin{matrix}108&110\\\frac{11}{10}&\frac{27}{25}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}108&110\\\frac{11}{10}&\frac{27}{25}\end{matrix}\right))\left(\begin{matrix}100800\\1028\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}108&110\\\frac{11}{10}&\frac{27}{25}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}108&110\\\frac{11}{10}&\frac{27}{25}\end{matrix}\right))\left(\begin{matrix}100800\\1028\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}108&110\\\frac{11}{10}&\frac{27}{25}\end{matrix}\right))\left(\begin{matrix}100800\\1028\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{27}{25}}{108\times \frac{27}{25}-110\times \frac{11}{10}}&-\frac{110}{108\times \frac{27}{25}-110\times \frac{11}{10}}\\-\frac{\frac{11}{10}}{108\times \frac{27}{25}-110\times \frac{11}{10}}&\frac{108}{108\times \frac{27}{25}-110\times \frac{11}{10}}\end{matrix}\right)\left(\begin{matrix}100800\\1028\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{27}{109}&\frac{2750}{109}\\\frac{55}{218}&-\frac{2700}{109}\end{matrix}\right)\left(\begin{matrix}100800\\1028\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{27}{109}\times 100800+\frac{2750}{109}\times 1028\\\frac{55}{218}\times 100800-\frac{2700}{109}\times 1028\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{105400}{109}\\-\frac{3600}{109}\end{matrix}\right)
Do the arithmetic.
x=\frac{105400}{109},y=-\frac{3600}{109}
Extract the matrix elements x and y.
108x+110y=100800
Consider the first equation. Multiply both sides of the equation by 100.
\frac{11}{10}x+\frac{108}{100}y=1028
Consider the second equation. Reduce the fraction \frac{110}{100} to lowest terms by extracting and canceling out 10.
\frac{11}{10}x+\frac{27}{25}y=1028
Reduce the fraction \frac{108}{100} to lowest terms by extracting and canceling out 4.
108x+110y=100800,\frac{11}{10}x+\frac{27}{25}y=1028
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{11}{10}\times 108x+\frac{11}{10}\times 110y=\frac{11}{10}\times 100800,108\times \frac{11}{10}x+108\times \frac{27}{25}y=108\times 1028
To make 108x and \frac{11x}{10} equal, multiply all terms on each side of the first equation by \frac{11}{10} and all terms on each side of the second by 108.
\frac{594}{5}x+121y=110880,\frac{594}{5}x+\frac{2916}{25}y=111024
Simplify.
\frac{594}{5}x-\frac{594}{5}x+121y-\frac{2916}{25}y=110880-111024
Subtract \frac{594}{5}x+\frac{2916}{25}y=111024 from \frac{594}{5}x+121y=110880 by subtracting like terms on each side of the equal sign.
121y-\frac{2916}{25}y=110880-111024
Add \frac{594x}{5} to -\frac{594x}{5}. Terms \frac{594x}{5} and -\frac{594x}{5} cancel out, leaving an equation with only one variable that can be solved.
\frac{109}{25}y=110880-111024
Add 121y to -\frac{2916y}{25}.
\frac{109}{25}y=-144
Add 110880 to -111024.
y=-\frac{3600}{109}
Divide both sides of the equation by \frac{109}{25}, which is the same as multiplying both sides by the reciprocal of the fraction.
\frac{11}{10}x+\frac{27}{25}\left(-\frac{3600}{109}\right)=1028
Substitute -\frac{3600}{109} for y in \frac{11}{10}x+\frac{27}{25}y=1028. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{11}{10}x-\frac{3888}{109}=1028
Multiply \frac{27}{25} times -\frac{3600}{109} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\frac{11}{10}x=\frac{115940}{109}
Add \frac{3888}{109} to both sides of the equation.
x=\frac{105400}{109}
Divide both sides of the equation by \frac{11}{10}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{105400}{109},y=-\frac{3600}{109}
The system is now solved.