Solve for a, b, c
a = \frac{7}{2} = 3\frac{1}{2} = 3.5
b=-\frac{5}{12}\approx -0.416666667
c=0
Share
Copied to clipboard
a-6b+6c=6 3a+18b+12c=3 a+6b+5c=1
Multiply each equation by the least common multiple of denominators in it. Simplify.
a=6+6b-6c
Solve a-6b+6c=6 for a.
3\left(6+6b-6c\right)+18b+12c=3 6+6b-6c+6b+5c=1
Substitute 6+6b-6c for a in the second and third equation.
b=-\frac{5}{12}+\frac{1}{6}c c=5+12b
Solve these equations for b and c respectively.
c=5+12\left(-\frac{5}{12}+\frac{1}{6}c\right)
Substitute -\frac{5}{12}+\frac{1}{6}c for b in the equation c=5+12b.
c=0
Solve c=5+12\left(-\frac{5}{12}+\frac{1}{6}c\right) for c.
b=-\frac{5}{12}+\frac{1}{6}\times 0
Substitute 0 for c in the equation b=-\frac{5}{12}+\frac{1}{6}c.
b=-\frac{5}{12}
Calculate b from b=-\frac{5}{12}+\frac{1}{6}\times 0.
a=6+6\left(-\frac{5}{12}\right)-6\times 0
Substitute -\frac{5}{12} for b and 0 for c in the equation a=6+6b-6c.
a=\frac{7}{2}
Calculate a from a=6+6\left(-\frac{5}{12}\right)-6\times 0.
a=\frac{7}{2} b=-\frac{5}{12} c=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}