Solve for x, N_1
x=640
N_{1}=260
Graph
Share
Copied to clipboard
\frac{1}{2}\left(x+40\right)=600-N_{1}
Consider the first equation. Add -80 and 120 to get 40.
\frac{1}{2}x+20=600-N_{1}
Use the distributive property to multiply \frac{1}{2} by x+40.
\frac{1}{2}x+20+N_{1}=600
Add N_{1} to both sides.
\frac{1}{2}x+N_{1}=600-20
Subtract 20 from both sides.
\frac{1}{2}x+N_{1}=580
Subtract 20 from 600 to get 580.
\frac{1}{2}\left(x+80\right)=600-\frac{12}{13}N_{1}
Consider the second equation. Add -40 and 120 to get 80.
\frac{1}{2}x+40=600-\frac{12}{13}N_{1}
Use the distributive property to multiply \frac{1}{2} by x+80.
\frac{1}{2}x+40+\frac{12}{13}N_{1}=600
Add \frac{12}{13}N_{1} to both sides.
\frac{1}{2}x+\frac{12}{13}N_{1}=600-40
Subtract 40 from both sides.
\frac{1}{2}x+\frac{12}{13}N_{1}=560
Subtract 40 from 600 to get 560.
\frac{1}{2}x+N_{1}=580,\frac{1}{2}x+\frac{12}{13}N_{1}=560
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{2}x+N_{1}=580
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{2}x=-N_{1}+580
Subtract N_{1} from both sides of the equation.
x=2\left(-N_{1}+580\right)
Multiply both sides by 2.
x=-2N_{1}+1160
Multiply 2 times -N_{1}+580.
\frac{1}{2}\left(-2N_{1}+1160\right)+\frac{12}{13}N_{1}=560
Substitute -2N_{1}+1160 for x in the other equation, \frac{1}{2}x+\frac{12}{13}N_{1}=560.
-N_{1}+580+\frac{12}{13}N_{1}=560
Multiply \frac{1}{2} times -2N_{1}+1160.
-\frac{1}{13}N_{1}+580=560
Add -N_{1} to \frac{12N_{1}}{13}.
-\frac{1}{13}N_{1}=-20
Subtract 580 from both sides of the equation.
N_{1}=260
Multiply both sides by -13.
x=-2\times 260+1160
Substitute 260 for N_{1} in x=-2N_{1}+1160. Because the resulting equation contains only one variable, you can solve for x directly.
x=-520+1160
Multiply -2 times 260.
x=640
Add 1160 to -520.
x=640,N_{1}=260
The system is now solved.
\frac{1}{2}\left(x+40\right)=600-N_{1}
Consider the first equation. Add -80 and 120 to get 40.
\frac{1}{2}x+20=600-N_{1}
Use the distributive property to multiply \frac{1}{2} by x+40.
\frac{1}{2}x+20+N_{1}=600
Add N_{1} to both sides.
\frac{1}{2}x+N_{1}=600-20
Subtract 20 from both sides.
\frac{1}{2}x+N_{1}=580
Subtract 20 from 600 to get 580.
\frac{1}{2}\left(x+80\right)=600-\frac{12}{13}N_{1}
Consider the second equation. Add -40 and 120 to get 80.
\frac{1}{2}x+40=600-\frac{12}{13}N_{1}
Use the distributive property to multiply \frac{1}{2} by x+80.
\frac{1}{2}x+40+\frac{12}{13}N_{1}=600
Add \frac{12}{13}N_{1} to both sides.
\frac{1}{2}x+\frac{12}{13}N_{1}=600-40
Subtract 40 from both sides.
\frac{1}{2}x+\frac{12}{13}N_{1}=560
Subtract 40 from 600 to get 560.
\frac{1}{2}x+N_{1}=580,\frac{1}{2}x+\frac{12}{13}N_{1}=560
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}\frac{1}{2}&1\\\frac{1}{2}&\frac{12}{13}\end{matrix}\right)\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=\left(\begin{matrix}580\\560\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{2}&1\\\frac{1}{2}&\frac{12}{13}\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&1\\\frac{1}{2}&\frac{12}{13}\end{matrix}\right)\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&1\\\frac{1}{2}&\frac{12}{13}\end{matrix}\right))\left(\begin{matrix}580\\560\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{2}&1\\\frac{1}{2}&\frac{12}{13}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&1\\\frac{1}{2}&\frac{12}{13}\end{matrix}\right))\left(\begin{matrix}580\\560\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&1\\\frac{1}{2}&\frac{12}{13}\end{matrix}\right))\left(\begin{matrix}580\\560\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{12}{13}}{\frac{1}{2}\times \frac{12}{13}-\frac{1}{2}}&-\frac{1}{\frac{1}{2}\times \frac{12}{13}-\frac{1}{2}}\\-\frac{\frac{1}{2}}{\frac{1}{2}\times \frac{12}{13}-\frac{1}{2}}&\frac{\frac{1}{2}}{\frac{1}{2}\times \frac{12}{13}-\frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}580\\560\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=\left(\begin{matrix}-24&26\\13&-13\end{matrix}\right)\left(\begin{matrix}580\\560\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=\left(\begin{matrix}-24\times 580+26\times 560\\13\times 580-13\times 560\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\N_{1}\end{matrix}\right)=\left(\begin{matrix}640\\260\end{matrix}\right)
Do the arithmetic.
x=640,N_{1}=260
Extract the matrix elements x and N_{1}.
\frac{1}{2}\left(x+40\right)=600-N_{1}
Consider the first equation. Add -80 and 120 to get 40.
\frac{1}{2}x+20=600-N_{1}
Use the distributive property to multiply \frac{1}{2} by x+40.
\frac{1}{2}x+20+N_{1}=600
Add N_{1} to both sides.
\frac{1}{2}x+N_{1}=600-20
Subtract 20 from both sides.
\frac{1}{2}x+N_{1}=580
Subtract 20 from 600 to get 580.
\frac{1}{2}\left(x+80\right)=600-\frac{12}{13}N_{1}
Consider the second equation. Add -40 and 120 to get 80.
\frac{1}{2}x+40=600-\frac{12}{13}N_{1}
Use the distributive property to multiply \frac{1}{2} by x+80.
\frac{1}{2}x+40+\frac{12}{13}N_{1}=600
Add \frac{12}{13}N_{1} to both sides.
\frac{1}{2}x+\frac{12}{13}N_{1}=600-40
Subtract 40 from both sides.
\frac{1}{2}x+\frac{12}{13}N_{1}=560
Subtract 40 from 600 to get 560.
\frac{1}{2}x+N_{1}=580,\frac{1}{2}x+\frac{12}{13}N_{1}=560
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{1}{2}x-\frac{1}{2}x+N_{1}-\frac{12}{13}N_{1}=580-560
Subtract \frac{1}{2}x+\frac{12}{13}N_{1}=560 from \frac{1}{2}x+N_{1}=580 by subtracting like terms on each side of the equal sign.
N_{1}-\frac{12}{13}N_{1}=580-560
Add \frac{x}{2} to -\frac{x}{2}. Terms \frac{x}{2} and -\frac{x}{2} cancel out, leaving an equation with only one variable that can be solved.
\frac{1}{13}N_{1}=580-560
Add N_{1} to -\frac{12N_{1}}{13}.
\frac{1}{13}N_{1}=20
Add 580 to -560.
N_{1}=260
Multiply both sides by 13.
\frac{1}{2}x+\frac{12}{13}\times 260=560
Substitute 260 for N_{1} in \frac{1}{2}x+\frac{12}{13}N_{1}=560. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{1}{2}x+240=560
Multiply \frac{12}{13} times 260.
\frac{1}{2}x=320
Subtract 240 from both sides of the equation.
x=640
Multiply both sides by 2.
x=640,N_{1}=260
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}