\left. \begin{array} { l } { \frac { 1 } { 2 } : 7 + ( 2 \frac { 1 } { 7 } - 1 \frac { 34 } { 35 } ) \cdot ( 3 \frac { 3 } { 9 } - 1 \frac { 3 } { 4 } ) } \\ { ( 1 \frac { 3 } { 4 } : \frac { 4 } { 7 } - \frac { 1 } { 4 } \cdot \frac { 1 } { 4 } - \frac { 5 } { 8 } ) : ( 3 \frac { 3 } { 4 } + \frac { 2 } { 5 } : 2 - \frac { 7 } { 12 } : \frac { 14 } { 15 } ) } \end{array} \right.
Sort
\frac{12}{35},\ \frac{5}{7}
Evaluate
\frac{12}{35},\ \frac{5}{7}
Share
Copied to clipboard
sort(\frac{1}{2\times 7}+\left(\frac{2\times 7+1}{7}-\frac{1\times 35+34}{35}\right)\left(\frac{3\times 9+3}{9}-\frac{1\times 4+3}{4}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Express \frac{\frac{1}{2}}{7} as a single fraction.
sort(\frac{1}{14}+\left(\frac{2\times 7+1}{7}-\frac{1\times 35+34}{35}\right)\left(\frac{3\times 9+3}{9}-\frac{1\times 4+3}{4}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Multiply 2 and 7 to get 14.
sort(\frac{1}{14}+\left(\frac{14+1}{7}-\frac{1\times 35+34}{35}\right)\left(\frac{3\times 9+3}{9}-\frac{1\times 4+3}{4}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Multiply 2 and 7 to get 14.
sort(\frac{1}{14}+\left(\frac{15}{7}-\frac{1\times 35+34}{35}\right)\left(\frac{3\times 9+3}{9}-\frac{1\times 4+3}{4}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Add 14 and 1 to get 15.
sort(\frac{1}{14}+\left(\frac{15}{7}-\frac{35+34}{35}\right)\left(\frac{3\times 9+3}{9}-\frac{1\times 4+3}{4}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Multiply 1 and 35 to get 35.
sort(\frac{1}{14}+\left(\frac{15}{7}-\frac{69}{35}\right)\left(\frac{3\times 9+3}{9}-\frac{1\times 4+3}{4}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Add 35 and 34 to get 69.
sort(\frac{1}{14}+\left(\frac{75}{35}-\frac{69}{35}\right)\left(\frac{3\times 9+3}{9}-\frac{1\times 4+3}{4}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Least common multiple of 7 and 35 is 35. Convert \frac{15}{7} and \frac{69}{35} to fractions with denominator 35.
sort(\frac{1}{14}+\frac{75-69}{35}\left(\frac{3\times 9+3}{9}-\frac{1\times 4+3}{4}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Since \frac{75}{35} and \frac{69}{35} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{1}{14}+\frac{6}{35}\left(\frac{3\times 9+3}{9}-\frac{1\times 4+3}{4}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Subtract 69 from 75 to get 6.
sort(\frac{1}{14}+\frac{6}{35}\left(\frac{27+3}{9}-\frac{1\times 4+3}{4}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Multiply 3 and 9 to get 27.
sort(\frac{1}{14}+\frac{6}{35}\left(\frac{30}{9}-\frac{1\times 4+3}{4}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Add 27 and 3 to get 30.
sort(\frac{1}{14}+\frac{6}{35}\left(\frac{10}{3}-\frac{1\times 4+3}{4}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Reduce the fraction \frac{30}{9} to lowest terms by extracting and canceling out 3.
sort(\frac{1}{14}+\frac{6}{35}\left(\frac{10}{3}-\frac{4+3}{4}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Multiply 1 and 4 to get 4.
sort(\frac{1}{14}+\frac{6}{35}\left(\frac{10}{3}-\frac{7}{4}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Add 4 and 3 to get 7.
sort(\frac{1}{14}+\frac{6}{35}\left(\frac{40}{12}-\frac{21}{12}\right),\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Least common multiple of 3 and 4 is 12. Convert \frac{10}{3} and \frac{7}{4} to fractions with denominator 12.
sort(\frac{1}{14}+\frac{6}{35}\times \frac{40-21}{12},\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Since \frac{40}{12} and \frac{21}{12} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{1}{14}+\frac{6}{35}\times \frac{19}{12},\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Subtract 21 from 40 to get 19.
sort(\frac{1}{14}+\frac{6\times 19}{35\times 12},\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Multiply \frac{6}{35} times \frac{19}{12} by multiplying numerator times numerator and denominator times denominator.
sort(\frac{1}{14}+\frac{114}{420},\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Do the multiplications in the fraction \frac{6\times 19}{35\times 12}.
sort(\frac{1}{14}+\frac{19}{70},\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Reduce the fraction \frac{114}{420} to lowest terms by extracting and canceling out 6.
sort(\frac{5}{70}+\frac{19}{70},\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Least common multiple of 14 and 70 is 70. Convert \frac{1}{14} and \frac{19}{70} to fractions with denominator 70.
sort(\frac{5+19}{70},\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Since \frac{5}{70} and \frac{19}{70} have the same denominator, add them by adding their numerators.
sort(\frac{24}{70},\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Add 5 and 19 to get 24.
sort(\frac{12}{35},\frac{\frac{\frac{1\times 4+3}{4}}{\frac{4}{7}}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Reduce the fraction \frac{24}{70} to lowest terms by extracting and canceling out 2.
sort(\frac{12}{35},\frac{\frac{\left(1\times 4+3\right)\times 7}{4\times 4}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Divide \frac{1\times 4+3}{4} by \frac{4}{7} by multiplying \frac{1\times 4+3}{4} by the reciprocal of \frac{4}{7}.
sort(\frac{12}{35},\frac{\frac{\left(4+3\right)\times 7}{4\times 4}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Multiply 1 and 4 to get 4.
sort(\frac{12}{35},\frac{\frac{7\times 7}{4\times 4}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Add 4 and 3 to get 7.
sort(\frac{12}{35},\frac{\frac{49}{4\times 4}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Multiply 7 and 7 to get 49.
sort(\frac{12}{35},\frac{\frac{49}{16}-\frac{1}{4}\times \frac{1}{4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Multiply 4 and 4 to get 16.
sort(\frac{12}{35},\frac{\frac{49}{16}-\frac{1\times 1}{4\times 4}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Multiply \frac{1}{4} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
sort(\frac{12}{35},\frac{\frac{49}{16}-\frac{1}{16}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Do the multiplications in the fraction \frac{1\times 1}{4\times 4}.
sort(\frac{12}{35},\frac{\frac{49-1}{16}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Since \frac{49}{16} and \frac{1}{16} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{12}{35},\frac{\frac{48}{16}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Subtract 1 from 49 to get 48.
sort(\frac{12}{35},\frac{3-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Divide 48 by 16 to get 3.
sort(\frac{12}{35},\frac{\frac{24}{8}-\frac{5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Convert 3 to fraction \frac{24}{8}.
sort(\frac{12}{35},\frac{\frac{24-5}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Since \frac{24}{8} and \frac{5}{8} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{3\times 4+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Subtract 5 from 24 to get 19.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{12+3}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Multiply 3 and 4 to get 12.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{15}{4}+\frac{\frac{2}{5}}{2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Add 12 and 3 to get 15.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{15}{4}+\frac{2}{5\times 2}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Express \frac{\frac{2}{5}}{2} as a single fraction.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{15}{4}+\frac{1}{5}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Cancel out 2 in both numerator and denominator.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{75}{20}+\frac{4}{20}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Least common multiple of 4 and 5 is 20. Convert \frac{15}{4} and \frac{1}{5} to fractions with denominator 20.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{75+4}{20}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Since \frac{75}{20} and \frac{4}{20} have the same denominator, add them by adding their numerators.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{79}{20}-\frac{\frac{7}{12}}{\frac{14}{15}}})
Add 75 and 4 to get 79.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{79}{20}-\frac{7}{12}\times \frac{15}{14}})
Divide \frac{7}{12} by \frac{14}{15} by multiplying \frac{7}{12} by the reciprocal of \frac{14}{15}.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{79}{20}-\frac{7\times 15}{12\times 14}})
Multiply \frac{7}{12} times \frac{15}{14} by multiplying numerator times numerator and denominator times denominator.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{79}{20}-\frac{105}{168}})
Do the multiplications in the fraction \frac{7\times 15}{12\times 14}.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{79}{20}-\frac{5}{8}})
Reduce the fraction \frac{105}{168} to lowest terms by extracting and canceling out 21.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{158}{40}-\frac{25}{40}})
Least common multiple of 20 and 8 is 40. Convert \frac{79}{20} and \frac{5}{8} to fractions with denominator 40.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{158-25}{40}})
Since \frac{158}{40} and \frac{25}{40} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{12}{35},\frac{\frac{19}{8}}{\frac{133}{40}})
Subtract 25 from 158 to get 133.
sort(\frac{12}{35},\frac{19}{8}\times \frac{40}{133})
Divide \frac{19}{8} by \frac{133}{40} by multiplying \frac{19}{8} by the reciprocal of \frac{133}{40}.
sort(\frac{12}{35},\frac{19\times 40}{8\times 133})
Multiply \frac{19}{8} times \frac{40}{133} by multiplying numerator times numerator and denominator times denominator.
sort(\frac{12}{35},\frac{760}{1064})
Do the multiplications in the fraction \frac{19\times 40}{8\times 133}.
sort(\frac{12}{35},\frac{5}{7})
Reduce the fraction \frac{760}{1064} to lowest terms by extracting and canceling out 152.
\frac{12}{35},\frac{25}{35}
Least common denominator of the numbers in the list \frac{12}{35},\frac{5}{7} is 35. Convert numbers in the list to fractions with denominator 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}