Skip to main content
Solve for a, b, c
Tick mark Image

Similar Problems from Web Search

Share

a=\frac{130}{47}+\frac{95}{141}b+\frac{10}{47}c
Solve \frac{1}{15}\left(3a+5b\right)+c=\frac{1}{2}\left(7b+4c-9a-8\right)+17 for a.
3\left(7\left(\frac{130}{47}+\frac{95}{141}b+\frac{10}{47}c\right)+3b+c\right)=2\left(5\left(\frac{130}{47}+\frac{95}{141}b+\frac{10}{47}c\right)+9b+4c+4\right)+15 \frac{1}{5}\left(11\left(\frac{130}{47}+\frac{95}{141}b+\frac{10}{47}c\right)+5c-30\right)-6c=\frac{1}{8}\left(13b+c\right)-\left(\frac{130}{47}+\frac{95}{141}b+\frac{10}{47}c\right)
Substitute \frac{130}{47}+\frac{95}{141}b+\frac{10}{47}c for a in the second and third equation.
b=\frac{1047}{224}-\frac{375}{224}c c=\frac{1072}{1671}+\frac{599}{5013}b
Solve these equations for b and c respectively.
c=\frac{1072}{1671}+\frac{599}{5013}\left(\frac{1047}{224}-\frac{375}{224}c\right)
Substitute \frac{1047}{224}-\frac{375}{224}c for b in the equation c=\frac{1072}{1671}+\frac{599}{5013}b.
c=1
Solve c=\frac{1072}{1671}+\frac{599}{5013}\left(\frac{1047}{224}-\frac{375}{224}c\right) for c.
b=\frac{1047}{224}-\frac{375}{224}
Substitute 1 for c in the equation b=\frac{1047}{224}-\frac{375}{224}c.
b=3
Calculate b from b=\frac{1047}{224}-\frac{375}{224}.
a=\frac{130}{47}+\frac{95}{141}\times 3+\frac{10}{47}\times 1
Substitute 3 for b and 1 for c in the equation a=\frac{130}{47}+\frac{95}{141}b+\frac{10}{47}c.
a=5
Calculate a from a=\frac{130}{47}+\frac{95}{141}\times 3+\frac{10}{47}\times 1.
a=5 b=3 c=1
The system is now solved.