Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\left(\frac{2}{3}x+\frac{1}{2}y\right)\left(\frac{4}{9}x^{2}+\frac{1}{4}y^{2}-\frac{1}{3}xy\right)+2x+\left(\frac{1}{3}x+\frac{1}{2}y\right)\left(\frac{1}{3}x-\frac{1}{2}y\right)+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{2}{3}x+\frac{1}{2}y\right)^{2}.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\left(\frac{8}{27}x^{3}+\frac{1}{8}y^{3}\right)+2x+\left(\frac{1}{3}x+\frac{1}{2}y\right)\left(\frac{1}{3}x-\frac{1}{2}y\right)+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Use the distributive property to multiply \frac{2}{3}x+\frac{1}{2}y by \frac{4}{9}x^{2}+\frac{1}{4}y^{2}-\frac{1}{3}xy and combine like terms.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\left(\frac{1}{3}x+\frac{1}{2}y\right)\left(\frac{1}{3}x-\frac{1}{2}y\right)+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
To find the opposite of \frac{8}{27}x^{3}+\frac{1}{8}y^{3}, find the opposite of each term.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\left(\frac{1}{3}x\right)^{2}-\left(\frac{1}{2}y\right)^{2}+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Consider \left(\frac{1}{3}x+\frac{1}{2}y\right)\left(\frac{1}{3}x-\frac{1}{2}y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\left(\frac{1}{3}\right)^{2}x^{2}-\left(\frac{1}{2}y\right)^{2}+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Expand \left(\frac{1}{3}x\right)^{2}.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\frac{1}{9}x^{2}-\left(\frac{1}{2}y\right)^{2}+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\frac{1}{9}x^{2}-\left(\frac{1}{2}\right)^{2}y^{2}+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Expand \left(\frac{1}{2}y\right)^{2}.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\frac{1}{9}x^{2}-\frac{1}{4}y^{2}+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{5}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x-\frac{1}{4}y^{2}+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Combine \frac{4}{9}x^{2} and \frac{1}{9}x^{2} to get \frac{5}{9}x^{2}.
\frac{5}{9}x^{2}+\frac{2}{3}xy-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Combine \frac{1}{4}y^{2} and -\frac{1}{4}y^{2} to get 0.
\frac{5}{9}x^{2}+\frac{2}{3}xy-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\frac{2}{3}xy-\frac{1}{9}x^{2}
Use the distributive property to multiply \frac{2}{3}x by y-\frac{1}{6}x.
\frac{5}{9}x^{2}+\frac{4}{3}xy-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x-\frac{1}{9}x^{2}
Combine \frac{2}{3}xy and \frac{2}{3}xy to get \frac{4}{3}xy.
\frac{4}{9}x^{2}+\frac{4}{3}xy-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x
Combine \frac{5}{9}x^{2} and -\frac{1}{9}x^{2} to get \frac{4}{9}x^{2}.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\left(\frac{2}{3}x+\frac{1}{2}y\right)\left(\frac{4}{9}x^{2}+\frac{1}{4}y^{2}-\frac{1}{3}xy\right)+2x+\left(\frac{1}{3}x+\frac{1}{2}y\right)\left(\frac{1}{3}x-\frac{1}{2}y\right)+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{2}{3}x+\frac{1}{2}y\right)^{2}.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\left(\frac{8}{27}x^{3}+\frac{1}{8}y^{3}\right)+2x+\left(\frac{1}{3}x+\frac{1}{2}y\right)\left(\frac{1}{3}x-\frac{1}{2}y\right)+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Use the distributive property to multiply \frac{2}{3}x+\frac{1}{2}y by \frac{4}{9}x^{2}+\frac{1}{4}y^{2}-\frac{1}{3}xy and combine like terms.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\left(\frac{1}{3}x+\frac{1}{2}y\right)\left(\frac{1}{3}x-\frac{1}{2}y\right)+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
To find the opposite of \frac{8}{27}x^{3}+\frac{1}{8}y^{3}, find the opposite of each term.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\left(\frac{1}{3}x\right)^{2}-\left(\frac{1}{2}y\right)^{2}+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Consider \left(\frac{1}{3}x+\frac{1}{2}y\right)\left(\frac{1}{3}x-\frac{1}{2}y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\left(\frac{1}{3}\right)^{2}x^{2}-\left(\frac{1}{2}y\right)^{2}+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Expand \left(\frac{1}{3}x\right)^{2}.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\frac{1}{9}x^{2}-\left(\frac{1}{2}y\right)^{2}+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\frac{1}{9}x^{2}-\left(\frac{1}{2}\right)^{2}y^{2}+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Expand \left(\frac{1}{2}y\right)^{2}.
\frac{4}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\frac{1}{9}x^{2}-\frac{1}{4}y^{2}+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{5}{9}x^{2}+\frac{2}{3}xy+\frac{1}{4}y^{2}-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x-\frac{1}{4}y^{2}+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Combine \frac{4}{9}x^{2} and \frac{1}{9}x^{2} to get \frac{5}{9}x^{2}.
\frac{5}{9}x^{2}+\frac{2}{3}xy-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\frac{2}{3}x\left(y-\frac{1}{6}x\right)
Combine \frac{1}{4}y^{2} and -\frac{1}{4}y^{2} to get 0.
\frac{5}{9}x^{2}+\frac{2}{3}xy-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x+\frac{2}{3}xy-\frac{1}{9}x^{2}
Use the distributive property to multiply \frac{2}{3}x by y-\frac{1}{6}x.
\frac{5}{9}x^{2}+\frac{4}{3}xy-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x-\frac{1}{9}x^{2}
Combine \frac{2}{3}xy and \frac{2}{3}xy to get \frac{4}{3}xy.
\frac{4}{9}x^{2}+\frac{4}{3}xy-\frac{8}{27}x^{3}-\frac{1}{8}y^{3}+2x
Combine \frac{5}{9}x^{2} and -\frac{1}{9}x^{2} to get \frac{4}{9}x^{2}.