Solve for y, z
y=470
z=-400
Share
Copied to clipboard
6y+5z=820,3y+2z=610
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6y+5z=820
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
6y=-5z+820
Subtract 5z from both sides of the equation.
y=\frac{1}{6}\left(-5z+820\right)
Divide both sides by 6.
y=-\frac{5}{6}z+\frac{410}{3}
Multiply \frac{1}{6} times -5z+820.
3\left(-\frac{5}{6}z+\frac{410}{3}\right)+2z=610
Substitute -\frac{5z}{6}+\frac{410}{3} for y in the other equation, 3y+2z=610.
-\frac{5}{2}z+410+2z=610
Multiply 3 times -\frac{5z}{6}+\frac{410}{3}.
-\frac{1}{2}z+410=610
Add -\frac{5z}{2} to 2z.
-\frac{1}{2}z=200
Subtract 410 from both sides of the equation.
z=-400
Multiply both sides by -2.
y=-\frac{5}{6}\left(-400\right)+\frac{410}{3}
Substitute -400 for z in y=-\frac{5}{6}z+\frac{410}{3}. Because the resulting equation contains only one variable, you can solve for y directly.
y=\frac{1000+410}{3}
Multiply -\frac{5}{6} times -400.
y=470
Add \frac{410}{3} to \frac{1000}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=470,z=-400
The system is now solved.
6y+5z=820,3y+2z=610
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&5\\3&2\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}820\\610\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&5\\3&2\end{matrix}\right))\left(\begin{matrix}6&5\\3&2\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\3&2\end{matrix}\right))\left(\begin{matrix}820\\610\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&5\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\3&2\end{matrix}\right))\left(\begin{matrix}820\\610\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\3&2\end{matrix}\right))\left(\begin{matrix}820\\610\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}\frac{2}{6\times 2-5\times 3}&-\frac{5}{6\times 2-5\times 3}\\-\frac{3}{6\times 2-5\times 3}&\frac{6}{6\times 2-5\times 3}\end{matrix}\right)\left(\begin{matrix}820\\610\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{5}{3}\\1&-2\end{matrix}\right)\left(\begin{matrix}820\\610\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 820+\frac{5}{3}\times 610\\820-2\times 610\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}470\\-400\end{matrix}\right)
Do the arithmetic.
y=470,z=-400
Extract the matrix elements y and z.
6y+5z=820,3y+2z=610
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 6y+3\times 5z=3\times 820,6\times 3y+6\times 2z=6\times 610
To make 6y and 3y equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 6.
18y+15z=2460,18y+12z=3660
Simplify.
18y-18y+15z-12z=2460-3660
Subtract 18y+12z=3660 from 18y+15z=2460 by subtracting like terms on each side of the equal sign.
15z-12z=2460-3660
Add 18y to -18y. Terms 18y and -18y cancel out, leaving an equation with only one variable that can be solved.
3z=2460-3660
Add 15z to -12z.
3z=-1200
Add 2460 to -3660.
z=-400
Divide both sides by 3.
3y+2\left(-400\right)=610
Substitute -400 for z in 3y+2z=610. Because the resulting equation contains only one variable, you can solve for y directly.
3y-800=610
Multiply 2 times -400.
3y=1410
Add 800 to both sides of the equation.
y=470
Divide both sides by 3.
y=470,z=-400
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}