Solve for y, x, z, a
a=\frac{4}{21}\approx 0.19047619
Share
Copied to clipboard
4x-23=19
Consider the second equation. Insert the known values of variables into the equation.
4x=19+23
Add 23 to both sides.
4x=42
Add 19 and 23 to get 42.
x=\frac{42}{4}
Divide both sides by 4.
x=\frac{21}{2}
Reduce the fraction \frac{42}{4} to lowest terms by extracting and canceling out 2.
z=\frac{23}{\frac{21}{2}}-2
Consider the third equation. Insert the known values of variables into the equation.
z=23\times \frac{2}{21}-2
Divide 23 by \frac{21}{2} by multiplying 23 by the reciprocal of \frac{21}{2}.
z=\frac{46}{21}-2
Multiply 23 and \frac{2}{21} to get \frac{46}{21}.
z=\frac{4}{21}
Subtract 2 from \frac{46}{21} to get \frac{4}{21}.
a=\frac{4}{21}
Consider the fourth equation. Insert the known values of variables into the equation.
y=23 x=\frac{21}{2} z=\frac{4}{21} a=\frac{4}{21}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}