Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x+\frac{2}{3}x-2=\frac{4}{3}-5\left(x-\frac{6}{5}\right)
Consider the first equation. Use the distributive property to multiply \frac{2}{3} by x-3.
\frac{5}{3}x-2=\frac{4}{3}-5\left(x-\frac{6}{5}\right)
Combine x and \frac{2}{3}x to get \frac{5}{3}x.
\frac{5}{3}x-2=\frac{4}{3}-5x+6
Use the distributive property to multiply -5 by x-\frac{6}{5}.
\frac{5}{3}x-2=\frac{22}{3}-5x
Add \frac{4}{3} and 6 to get \frac{22}{3}.
\frac{5}{3}x-2+5x=\frac{22}{3}
Add 5x to both sides.
\frac{20}{3}x-2=\frac{22}{3}
Combine \frac{5}{3}x and 5x to get \frac{20}{3}x.
\frac{20}{3}x=\frac{22}{3}+2
Add 2 to both sides.
\frac{20}{3}x=\frac{28}{3}
Add \frac{22}{3} and 2 to get \frac{28}{3}.
x=\frac{28}{3}\times \frac{3}{20}
Multiply both sides by \frac{3}{20}, the reciprocal of \frac{20}{3}.
x=\frac{7}{5}
Multiply \frac{28}{3} and \frac{3}{20} to get \frac{7}{5}.
y=\frac{7}{5}-3\times \frac{7}{5}-12
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{7}{5}-\frac{21}{5}-12
Multiply -3 and \frac{7}{5} to get -\frac{21}{5}.
y=-\frac{14}{5}-12
Subtract \frac{21}{5} from \frac{7}{5} to get -\frac{14}{5}.
y=-\frac{74}{5}
Subtract 12 from -\frac{14}{5} to get -\frac{74}{5}.
z=-\frac{74}{5}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{7}{5} y=-\frac{74}{5} z=-\frac{74}{5}
The system is now solved.