Solve for u, v, t, s, w, x, y, z, a, b
b=-18
Share
Copied to clipboard
s=\frac{\left(-4-5\right)\times 4}{2}
Consider the fourth equation. Insert the known values of variables into the equation.
s=\frac{-9\times 4}{2}
Subtract 5 from -4 to get -9.
s=\frac{-36}{2}
Multiply -9 and 4 to get -36.
s=-18
Divide -36 by 2 to get -18.
w=-18
Consider the fifth equation. Insert the known values of variables into the equation.
x=-18
Consider the equation (6). Insert the known values of variables into the equation.
y=-18
Consider the equation (7). Insert the known values of variables into the equation.
z=-18
Consider the equation (8). Insert the known values of variables into the equation.
a=-18
Consider the equation (9). Insert the known values of variables into the equation.
b=-18
Consider the equation (10). Insert the known values of variables into the equation.
u=-4 v=-5 t=4 s=-18 w=-18 x=-18 y=-18 z=-18 a=-18 b=-18
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}