Solve for m, n, o
m=\frac{-\sqrt{11}i+1}{4}\approx 0.25-0.829156198i\text{, }n=\frac{\sqrt[4]{2}\left(-4+\sqrt{11}i\right)^{\frac{5}{4}}}{16}-6\sqrt[4]{-8+2\sqrt{11}i}-\frac{13\sqrt{11}i}{8}+\frac{389}{64}\approx -3.318615105-11.53491666i\text{, }o=\frac{\sqrt[4]{2}\left(-4+\sqrt{11}i\right)^{\frac{5}{4}}}{16}-6\sqrt[4]{-8+2\sqrt{11}i}-\frac{13\sqrt{11}i}{8}+\frac{389}{64}\approx -3.318615105-11.53491666i
m=\frac{1+\sqrt{11}i}{4}\approx 0.25+0.829156198i\text{, }n=\frac{\sqrt[4]{2}\left(-\sqrt{11}i-4\right)^{\frac{5}{4}}}{16}-6\sqrt[4]{-2\sqrt{11}i-8}+\frac{13\sqrt{11}i}{8}+\frac{389}{64}\approx -0.067276375-4.007224821i\text{, }o=\frac{\sqrt[4]{2}\left(-\sqrt{11}i-4\right)^{\frac{5}{4}}}{16}-6\sqrt[4]{-2\sqrt{11}i-8}+\frac{13\sqrt{11}i}{8}+\frac{389}{64}\approx -0.067276375-4.007224821i
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}