Solve for g, x, h, j, k
k=i
Share
Copied to clipboard
h=i
Consider the third equation. Swap sides so that all variable terms are on the left hand side.
i=g\times 5
Consider the second equation. Insert the known values of variables into the equation.
\frac{i}{5}=g
Divide both sides by 5.
\frac{1}{5}i=g
Divide i by 5 to get \frac{1}{5}i.
g=\frac{1}{5}i
Swap sides so that all variable terms are on the left hand side.
\frac{1}{5}ix=\left(\frac{1}{4}\right)^{3}-3
Consider the first equation. Insert the known values of variables into the equation.
\frac{1}{5}ix=\frac{1}{64}-3
Calculate \frac{1}{4} to the power of 3 and get \frac{1}{64}.
\frac{1}{5}ix=-\frac{191}{64}
Subtract 3 from \frac{1}{64} to get -\frac{191}{64}.
x=\frac{-\frac{191}{64}}{\frac{1}{5}i}
Divide both sides by \frac{1}{5}i.
x=\frac{-\frac{191}{64}i}{-\frac{1}{5}}
Multiply both numerator and denominator of \frac{-\frac{191}{64}}{\frac{1}{5}i} by imaginary unit i.
x=\frac{955}{64}i
Divide -\frac{191}{64}i by -\frac{1}{5} to get \frac{955}{64}i.
g=\frac{1}{5}i x=\frac{955}{64}i h=i j=i k=i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}