Solve for x_B, x_A, a, b
b=0
Share
Copied to clipboard
79=0.1914x_{B}
Consider the first equation. Multiply 0.22 and 0.87 to get 0.1914.
0.1914x_{B}=79
Swap sides so that all variable terms are on the left hand side.
x_{B}=\frac{79}{0.1914}
Divide both sides by 0.1914.
x_{B}=\frac{790000}{1914}
Expand \frac{79}{0.1914} by multiplying both numerator and the denominator by 10000.
x_{B}=\frac{395000}{957}
Reduce the fraction \frac{790000}{1914} to lowest terms by extracting and canceling out 2.
x_{A}+\frac{395000}{957}=20
Consider the second equation. Insert the known values of variables into the equation.
x_{A}=20-\frac{395000}{957}
Subtract \frac{395000}{957} from both sides.
x_{A}=-\frac{375860}{957}
Subtract \frac{395000}{957} from 20 to get -\frac{375860}{957}.
a=-\frac{375860}{957}\times 0
Consider the third equation. Insert the known values of variables into the equation.
a=0
Multiply -\frac{375860}{957} and 0 to get 0.
b=0
Consider the fourth equation. Insert the known values of variables into the equation.
x_{B}=\frac{395000}{957} x_{A}=-\frac{375860}{957} a=0 b=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}