Solve for b, c, d
d=12
Share
Copied to clipboard
40-7b=4\left(11\times 2+1\right)
Consider the first equation. Multiply both sides of the equation by 8, the least common multiple of 8,2.
40-7b=4\left(22+1\right)
Multiply 11 and 2 to get 22.
40-7b=4\times 23
Add 22 and 1 to get 23.
40-7b=92
Multiply 4 and 23 to get 92.
-7b=92-40
Subtract 40 from both sides.
-7b=52
Subtract 40 from 92 to get 52.
b=-\frac{52}{7}
Divide both sides by -7.
b=-\frac{52}{7} c=12 d=12
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}