Solve for w, x, y
y = -\frac{6}{5} = -1\frac{1}{5} = -1.2
Share
Copied to clipboard
w+2=\frac{2}{5}
Consider the first equation. Divide both sides by 5.
w=\frac{2}{5}-2
Subtract 2 from both sides.
w=-\frac{8}{5}
Subtract 2 from \frac{2}{5} to get -\frac{8}{5}.
x=2\left(-\frac{8}{5}\right)+2
Consider the second equation. Insert the known values of variables into the equation.
x=-\frac{16}{5}+2
Multiply 2 and -\frac{8}{5} to get -\frac{16}{5}.
x=-\frac{6}{5}
Add -\frac{16}{5} and 2 to get -\frac{6}{5}.
y=-\frac{6}{5}
Consider the third equation. Insert the known values of variables into the equation.
w=-\frac{8}{5} x=-\frac{6}{5} y=-\frac{6}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}