\left. \begin{array} { l } { 4 {(3 m + 2)} - 5 {(6 m - 1)} = 9 {(m - 8)} - 6 {(7 m - 4)} }\\ { n = 4 m }\\ { o = n }\\ { p = o }\\ { q = p }\\ { r = q }\\ { s = r }\\ { t = s }\\ { u = t }\\ { v = u }\\ { w = v }\\ { x = w }\\ { \text{Solve for } y \text{ where} } \\ { y = x } \end{array} \right.
Solve for m, n, o, p, q, r, s, t, u, v, w, x, y
y = -\frac{244}{15} = -16\frac{4}{15} \approx -16.266666667
Share
Copied to clipboard
12m+8-5\left(6m-1\right)=9\left(m-8\right)-6\left(7m-4\right)
Consider the first equation. Use the distributive property to multiply 4 by 3m+2.
12m+8-30m+5=9\left(m-8\right)-6\left(7m-4\right)
Use the distributive property to multiply -5 by 6m-1.
-18m+8+5=9\left(m-8\right)-6\left(7m-4\right)
Combine 12m and -30m to get -18m.
-18m+13=9\left(m-8\right)-6\left(7m-4\right)
Add 8 and 5 to get 13.
-18m+13=9m-72-6\left(7m-4\right)
Use the distributive property to multiply 9 by m-8.
-18m+13=9m-72-42m+24
Use the distributive property to multiply -6 by 7m-4.
-18m+13=-33m-72+24
Combine 9m and -42m to get -33m.
-18m+13=-33m-48
Add -72 and 24 to get -48.
-18m+13+33m=-48
Add 33m to both sides.
15m+13=-48
Combine -18m and 33m to get 15m.
15m=-48-13
Subtract 13 from both sides.
15m=-61
Subtract 13 from -48 to get -61.
m=-\frac{61}{15}
Divide both sides by 15.
n=4\left(-\frac{61}{15}\right)
Consider the second equation. Insert the known values of variables into the equation.
n=-\frac{244}{15}
Multiply 4 and -\frac{61}{15} to get -\frac{244}{15}.
o=-\frac{244}{15}
Consider the third equation. Insert the known values of variables into the equation.
p=-\frac{244}{15}
Consider the fourth equation. Insert the known values of variables into the equation.
q=-\frac{244}{15}
Consider the fifth equation. Insert the known values of variables into the equation.
r=-\frac{244}{15}
Consider the equation (6). Insert the known values of variables into the equation.
s=-\frac{244}{15}
Consider the equation (7). Insert the known values of variables into the equation.
t=-\frac{244}{15}
Consider the equation (8). Insert the known values of variables into the equation.
u=-\frac{244}{15}
Consider the equation (9). Insert the known values of variables into the equation.
v=-\frac{244}{15}
Consider the equation (10). Insert the known values of variables into the equation.
w=-\frac{244}{15}
Consider the equation (11). Insert the known values of variables into the equation.
x=-\frac{244}{15}
Consider the equation (12). Insert the known values of variables into the equation.
y=-\frac{244}{15}
Consider the equation (13). Insert the known values of variables into the equation.
m=-\frac{61}{15} n=-\frac{244}{15} o=-\frac{244}{15} p=-\frac{244}{15} q=-\frac{244}{15} r=-\frac{244}{15} s=-\frac{244}{15} t=-\frac{244}{15} u=-\frac{244}{15} v=-\frac{244}{15} w=-\frac{244}{15} x=-\frac{244}{15} y=-\frac{244}{15}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}