Solve for x, y, z
z = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Share
Copied to clipboard
3x+36x^{2}-\left(6x-1\right)\left(6x+1\right)=2
Consider the first equation. Use the distributive property to multiply 3x by 1+12x.
3x+36x^{2}-\left(\left(6x\right)^{2}-1\right)=2
Consider \left(6x-1\right)\left(6x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
3x+36x^{2}-\left(6^{2}x^{2}-1\right)=2
Expand \left(6x\right)^{2}.
3x+36x^{2}-\left(36x^{2}-1\right)=2
Calculate 6 to the power of 2 and get 36.
3x+36x^{2}-36x^{2}+1=2
To find the opposite of 36x^{2}-1, find the opposite of each term.
3x+1=2
Combine 36x^{2} and -36x^{2} to get 0.
3x=2-1
Subtract 1 from both sides.
3x=1
Subtract 1 from 2 to get 1.
x=\frac{1}{3}
Divide both sides by 3.
y=5\times \frac{1}{3}
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{5}{3}
Multiply 5 and \frac{1}{3} to get \frac{5}{3}.
z=\frac{5}{3}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{1}{3} y=\frac{5}{3} z=\frac{5}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}