Solve for x, y, z
z=1
Share
Copied to clipboard
24x-0.6x=3.2
Consider the first equation. Subtract 0.6x from both sides.
23.4x=3.2
Combine 24x and -0.6x to get 23.4x.
x=\frac{3.2}{23.4}
Divide both sides by 23.4.
x=\frac{32}{234}
Expand \frac{3.2}{23.4} by multiplying both numerator and the denominator by 10.
x=\frac{16}{117}
Reduce the fraction \frac{32}{234} to lowest terms by extracting and canceling out 2.
x=\frac{16}{117} y=1 z=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}