Solve for x, y, z
z = \frac{45}{8} = 5\frac{5}{8} = 5.625
Share
Copied to clipboard
23x-16+17x=14
Consider the first equation. Add 17x to both sides.
40x-16=14
Combine 23x and 17x to get 40x.
40x=14+16
Add 16 to both sides.
40x=30
Add 14 and 16 to get 30.
x=\frac{30}{40}
Divide both sides by 40.
x=\frac{3}{4}
Reduce the fraction \frac{30}{40} to lowest terms by extracting and canceling out 10.
y=\frac{3}{4}\left(\frac{3}{4}+4\right)+\frac{3}{4}\left(\frac{3}{4}+2\right)
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{3}{4}\times \frac{19}{4}+\frac{3}{4}\left(\frac{3}{4}+2\right)
Add \frac{3}{4} and 4 to get \frac{19}{4}.
y=\frac{57}{16}+\frac{3}{4}\left(\frac{3}{4}+2\right)
Multiply \frac{3}{4} and \frac{19}{4} to get \frac{57}{16}.
y=\frac{57}{16}+\frac{3}{4}\times \frac{11}{4}
Add \frac{3}{4} and 2 to get \frac{11}{4}.
y=\frac{57}{16}+\frac{33}{16}
Multiply \frac{3}{4} and \frac{11}{4} to get \frac{33}{16}.
y=\frac{45}{8}
Add \frac{57}{16} and \frac{33}{16} to get \frac{45}{8}.
z=\frac{45}{8}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{3}{4} y=\frac{45}{8} z=\frac{45}{8}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}