Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

23x-16+17x=14
Consider the first equation. Add 17x to both sides.
40x-16=14
Combine 23x and 17x to get 40x.
40x=14+16
Add 16 to both sides.
40x=30
Add 14 and 16 to get 30.
x=\frac{30}{40}
Divide both sides by 40.
x=\frac{3}{4}
Reduce the fraction \frac{30}{40} to lowest terms by extracting and canceling out 10.
y=\frac{3}{4}\left(\frac{3}{4}+4\right)+\frac{3}{4}\left(\frac{3}{4}+2\right)
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{3}{4}\times \frac{19}{4}+\frac{3}{4}\left(\frac{3}{4}+2\right)
Add \frac{3}{4} and 4 to get \frac{19}{4}.
y=\frac{57}{16}+\frac{3}{4}\left(\frac{3}{4}+2\right)
Multiply \frac{3}{4} and \frac{19}{4} to get \frac{57}{16}.
y=\frac{57}{16}+\frac{3}{4}\times \frac{11}{4}
Add \frac{3}{4} and 2 to get \frac{11}{4}.
y=\frac{57}{16}+\frac{33}{16}
Multiply \frac{3}{4} and \frac{11}{4} to get \frac{33}{16}.
y=\frac{45}{8}
Add \frac{57}{16} and \frac{33}{16} to get \frac{45}{8}.
z=\frac{45}{8}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{3}{4} y=\frac{45}{8} z=\frac{45}{8}
The system is now solved.