Solve for x, y, z
x=\frac{a-12}{2}
y=a-6
z=a
Share
Copied to clipboard
z=-2x+2y 2x-y=-6 a=z
Reorder the equations.
a=-2x+2y
Substitute -2x+2y for z in the equation a=z.
y=6+2x x=-\frac{1}{2}a+y
Solve the second equation for y and the third equation for x.
x=-\frac{1}{2}a+6+2x
Substitute 6+2x for y in the equation x=-\frac{1}{2}a+y.
x=-6+\frac{1}{2}a
Solve x=-\frac{1}{2}a+6+2x for x.
y=6+2\left(-6+\frac{1}{2}a\right)
Substitute -6+\frac{1}{2}a for x in the equation y=6+2x.
y=-6+a
Calculate y from y=6+2\left(-6+\frac{1}{2}a\right).
z=-2\left(-6+\frac{1}{2}a\right)+2\left(-6+a\right)
Substitute -6+a for y and -6+\frac{1}{2}a for x in the equation z=-2x+2y.
z=a
Calculate z from z=-2\left(-6+\frac{1}{2}a\right)+2\left(-6+a\right).
x=-6+\frac{1}{2}a y=-6+a z=a
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}