Solve for x, y, z
z = -\frac{21}{4} = -5\frac{1}{4} = -5.25
Share
Copied to clipboard
6x+3=0
Consider the first equation. Combine 2x and 4x to get 6x.
6x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-3}{6}
Divide both sides by 6.
x=-\frac{1}{2}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
y=\left(-\frac{1}{2}+4\right)\left(-\frac{1}{2}-1\right)
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{7}{2}\left(-\frac{1}{2}-1\right)
Add -\frac{1}{2} and 4 to get \frac{7}{2}.
y=\frac{7}{2}\left(-\frac{3}{2}\right)
Subtract 1 from -\frac{1}{2} to get -\frac{3}{2}.
y=-\frac{21}{4}
Multiply \frac{7}{2} and -\frac{3}{2} to get -\frac{21}{4}.
z=-\frac{21}{4}
Consider the third equation. Insert the known values of variables into the equation.
x=-\frac{1}{2} y=-\frac{21}{4} z=-\frac{21}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}