Solve for x, y, z
z=4
Share
Copied to clipboard
2000-1000\left(x+1\times 5-\frac{5}{8}\right)=8\left(2\times 125+7\right)
Consider the first equation. Multiply both sides of the equation by 1000, the least common multiple of 8,125.
2000-1000\left(x+5-\frac{5}{8}\right)=8\left(2\times 125+7\right)
Multiply 1 and 5 to get 5.
2000-1000\left(x+\frac{35}{8}\right)=8\left(2\times 125+7\right)
Subtract \frac{5}{8} from 5 to get \frac{35}{8}.
2000-1000x-4375=8\left(2\times 125+7\right)
Use the distributive property to multiply -1000 by x+\frac{35}{8}.
-2375-1000x=8\left(2\times 125+7\right)
Subtract 4375 from 2000 to get -2375.
-2375-1000x=8\left(250+7\right)
Multiply 2 and 125 to get 250.
-2375-1000x=8\times 257
Add 250 and 7 to get 257.
-2375-1000x=2056
Multiply 8 and 257 to get 2056.
-1000x=2056+2375
Add 2375 to both sides.
-1000x=4431
Add 2056 and 2375 to get 4431.
x=-\frac{4431}{1000}
Divide both sides by -1000.
x=-\frac{4431}{1000} y=4 z=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}