Solve for x, y, z, a, b
b = \frac{22}{3} = 7\frac{1}{3} \approx 7.333333333
Share
Copied to clipboard
2\left(3\times 2+1\right)=\left(1\times 2+1\right)x-2
Consider the first equation. Multiply both sides of the equation by 2.
2\left(6+1\right)=\left(1\times 2+1\right)x-2
Multiply 3 and 2 to get 6.
2\times 7=\left(1\times 2+1\right)x-2
Add 6 and 1 to get 7.
14=\left(1\times 2+1\right)x-2
Multiply 2 and 7 to get 14.
14=\left(2+1\right)x-2
Multiply 1 and 2 to get 2.
14=3x-2
Add 2 and 1 to get 3.
3x-2=14
Swap sides so that all variable terms are on the left hand side.
3x=14+2
Add 2 to both sides.
3x=16
Add 14 and 2 to get 16.
x=\frac{16}{3}
Divide both sides by 3.
y=\frac{16}{3}+2
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{22}{3}
Add \frac{16}{3} and 2 to get \frac{22}{3}.
z=\frac{22}{3}
Consider the third equation. Insert the known values of variables into the equation.
a=\frac{22}{3}
Consider the fourth equation. Insert the known values of variables into the equation.
b=\frac{22}{3}
Consider the fifth equation. Insert the known values of variables into the equation.
x=\frac{16}{3} y=\frac{22}{3} z=\frac{22}{3} a=\frac{22}{3} b=\frac{22}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}