Solve for x, y, z, a, b
b=40
Share
Copied to clipboard
60+x=2\left(150\times \frac{3}{5}-x\right)
Consider the first equation. Multiply 150 and \frac{2}{5} to get 60.
60+x=2\left(90-x\right)
Multiply 150 and \frac{3}{5} to get 90.
60+x=180-2x
Use the distributive property to multiply 2 by 90-x.
60+x+2x=180
Add 2x to both sides.
60+3x=180
Combine x and 2x to get 3x.
3x=180-60
Subtract 60 from both sides.
3x=120
Subtract 60 from 180 to get 120.
x=\frac{120}{3}
Divide both sides by 3.
x=40
Divide 120 by 3 to get 40.
y=40
Consider the second equation. Insert the known values of variables into the equation.
z=40
Consider the third equation. Insert the known values of variables into the equation.
a=40
Consider the fourth equation. Insert the known values of variables into the equation.
b=40
Consider the fifth equation. Insert the known values of variables into the equation.
x=40 y=40 z=40 a=40 b=40
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}