Solve for x, y, z
z=\frac{3}{5000000000000000000}=6 \cdot 10^{-19}
Share
Copied to clipboard
10^{-5}=x\times 1
Consider the first equation. To multiply powers of the same base, add their exponents. Add 1 and -6 to get -5.
\frac{1}{100000}=x\times 1
Calculate 10 to the power of -5 and get \frac{1}{100000}.
x\times 1=\frac{1}{100000}
Swap sides so that all variable terms are on the left hand side.
x=\frac{\frac{1}{100000}}{1}
Divide both sides by 1.
x=\frac{1}{100000\times 1}
Express \frac{\frac{1}{100000}}{1} as a single fraction.
x=\frac{1}{100000}
Cancel out 1 in both numerator and denominator.
y=6\times \frac{1}{10000000000000000000}
Consider the second equation. Calculate 10 to the power of -19 and get \frac{1}{10000000000000000000}.
y=\frac{3}{5000000000000000000}
Multiply 6 and \frac{1}{10000000000000000000} to get \frac{3}{5000000000000000000}.
z=\frac{3}{5000000000000000000}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{1}{100000} y=\frac{3}{5000000000000000000} z=\frac{3}{5000000000000000000}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}