Solve for x, y, z
z=\frac{11}{23}\approx 0.47826087
Share
Copied to clipboard
0.8x+0.12x=1
Consider the first equation. Multiply 0.2 and 0.6 to get 0.12.
0.92x=1
Combine 0.8x and 0.12x to get 0.92x.
x=\frac{1}{0.92}
Divide both sides by 0.92.
x=\frac{100}{92}
Expand \frac{1}{0.92} by multiplying both numerator and the denominator by 100.
x=\frac{25}{23}
Reduce the fraction \frac{100}{92} to lowest terms by extracting and canceling out 4.
y=0.6\times \frac{25}{23}-0.2\times \frac{25}{23}\times 0.8
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{15}{23}-0.2\times \frac{25}{23}\times 0.8
Multiply 0.6 and \frac{25}{23} to get \frac{15}{23}.
y=\frac{15}{23}-\frac{5}{23}\times 0.8
Multiply 0.2 and \frac{25}{23} to get \frac{5}{23}.
y=\frac{15}{23}-\frac{4}{23}
Multiply \frac{5}{23} and 0.8 to get \frac{4}{23}.
y=\frac{11}{23}
Subtract \frac{4}{23} from \frac{15}{23} to get \frac{11}{23}.
z=\frac{11}{23}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{25}{23} y=\frac{11}{23} z=\frac{11}{23}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}