Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

\left(x-9\right)!\times 0-45+54x=\left(4x-1\right)\times 2+5\left(1+2x\right)
Consider the first equation. Use the distributive property to multiply -9 by 5-6x.
\left(x-9\right)!\times 0-45+54x=8x-2+5\left(1+2x\right)
Use the distributive property to multiply 4x-1 by 2.
\left(x-9\right)!\times 0-45+54x=8x-2+5+10x
Use the distributive property to multiply 5 by 1+2x.
\left(x-9\right)!\times 0-45+54x=8x+3+10x
Add -2 and 5 to get 3.
\left(x-9\right)!\times 0-45+54x=18x+3
Combine 8x and 10x to get 18x.
\left(x-9\right)!\times 0-45+54x-18x=3
Subtract 18x from both sides.
\left(x-9\right)!\times 0-45+36x=3
Combine 54x and -18x to get 36x.
\left(x-9\right)!\times 0+36x=3+45
Add 45 to both sides.
\left(x-9\right)!\times 0+36x=48
Add 3 and 45 to get 48.
36x=48
Reorder the terms.
x=\frac{48}{36}
Divide both sides by 36.
x=\frac{4}{3}
Reduce the fraction \frac{48}{36} to lowest terms by extracting and canceling out 12.
y=4\times \frac{4}{3}-\left(2\times \frac{4}{3}+3\right)\left(3\times \frac{4}{3}-5\right)-40-\left(6\times \frac{4}{3}-1\right)\left(\frac{4}{3}-2\right)
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{16}{3}-\left(2\times \frac{4}{3}+3\right)\left(3\times \frac{4}{3}-5\right)-40-\left(6\times \frac{4}{3}-1\right)\left(\frac{4}{3}-2\right)
Multiply 4 and \frac{4}{3} to get \frac{16}{3}.
y=\frac{16}{3}-\left(\frac{8}{3}+3\right)\left(3\times \frac{4}{3}-5\right)-40-\left(6\times \frac{4}{3}-1\right)\left(\frac{4}{3}-2\right)
Multiply 2 and \frac{4}{3} to get \frac{8}{3}.
y=\frac{16}{3}-\frac{17}{3}\left(3\times \frac{4}{3}-5\right)-40-\left(6\times \frac{4}{3}-1\right)\left(\frac{4}{3}-2\right)
Add \frac{8}{3} and 3 to get \frac{17}{3}.
y=\frac{16}{3}-\frac{17}{3}\left(4-5\right)-40-\left(6\times \frac{4}{3}-1\right)\left(\frac{4}{3}-2\right)
Multiply 3 and \frac{4}{3} to get 4.
y=\frac{16}{3}-\frac{17}{3}\left(-1\right)-40-\left(6\times \frac{4}{3}-1\right)\left(\frac{4}{3}-2\right)
Subtract 5 from 4 to get -1.
y=\frac{16}{3}-\left(-\frac{17}{3}\right)-40-\left(6\times \frac{4}{3}-1\right)\left(\frac{4}{3}-2\right)
Multiply \frac{17}{3} and -1 to get -\frac{17}{3}.
y=\frac{16}{3}+\frac{17}{3}-40-\left(6\times \frac{4}{3}-1\right)\left(\frac{4}{3}-2\right)
The opposite of -\frac{17}{3} is \frac{17}{3}.
y=11-40-\left(6\times \frac{4}{3}-1\right)\left(\frac{4}{3}-2\right)
Add \frac{16}{3} and \frac{17}{3} to get 11.
y=-29-\left(6\times \frac{4}{3}-1\right)\left(\frac{4}{3}-2\right)
Subtract 40 from 11 to get -29.
y=-29-\left(8-1\right)\left(\frac{4}{3}-2\right)
Multiply 6 and \frac{4}{3} to get 8.
y=-29-7\left(\frac{4}{3}-2\right)
Subtract 1 from 8 to get 7.
y=-29-7\left(-\frac{2}{3}\right)
Subtract 2 from \frac{4}{3} to get -\frac{2}{3}.
y=-29-\left(-\frac{14}{3}\right)
Multiply 7 and -\frac{2}{3} to get -\frac{14}{3}.
y=-29+\frac{14}{3}
The opposite of -\frac{14}{3} is \frac{14}{3}.
y=-\frac{73}{3}
Add -29 and \frac{14}{3} to get -\frac{73}{3}.
z=-\frac{73}{3}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{4}{3} y=-\frac{73}{3} z=-\frac{73}{3}
The system is now solved.