Solve for x, y, z
x\in (-\infty,-\sqrt[4]{3}]\cup [\sqrt[4]{3},\infty)\text{, }y=z\text{, }z=2(x^{4}-8)(x^{4}+2)\text{; }x=-\sqrt[4]{3}\approx -1.316074013\text{, }y=-50\text{, }z=-50\text{; }x=\sqrt[4]{3}\approx 1.316074013\text{, }y=-50\text{, }z=-50\text{; }x=0\text{, }y=-32\text{, }z=-32\text{; }x=-\frac{2^{\frac{3}{4}}\sqrt[4]{-\sqrt{2(z+50)}+6}}{2}\text{, }y=z\text{, }z\in [-50,-32]\text{; }x=\frac{2^{\frac{3}{4}}\sqrt[4]{-\sqrt{2(z+50)}+6}}{2}\text{, }y=z\text{, }z\in [-50,-32]
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}