Solve for θ, a, b (complex solution)
\theta =\pi n_{1}+\pi -\arctan(\frac{3}{4})
n_{1}\in \mathrm{Z}
a=\sin(\frac{\arctan(\frac{3}{4})}{2})\sin(\frac{\pi n_{1}}{2})+\cos(\frac{\arctan(\frac{3}{4})}{2})\cos(\frac{\pi n_{1}}{2})
n_{1}\in \mathrm{Z}
b\in \cup n_{1},\sin(\frac{\arctan(\frac{3}{4})}{2})\sin(\frac{\pi n_{1}}{2})+\cos(\frac{\arctan(\frac{3}{4})}{2})\cos(\frac{\pi n_{1}}{2})
n_{1}\in \mathrm{Z}
Solve for θ, a, b
\theta =2\pi n_{1}+2\pi -\arcsin(\frac{3}{5})\text{, }n_{1}\in \mathrm{Z}\text{, }a=\sin(\frac{\arcsin(\frac{3}{5})}{2})\left(-1\right)^{n_{1}}\text{, }n_{1}\in \mathrm{Z}\text{, }b=\sin(\frac{\arcsin(\frac{3}{5})}{2})\left(-1\right)^{n_{1}}\text{, }n_{1}\in \mathrm{Z}
\theta =2\pi n_{2}+\pi -\arcsin(\frac{3}{5})\text{, }n_{2}\in \mathrm{Z}\text{, }a=\cos(\frac{\arcsin(\frac{3}{5})}{2})\left(-1\right)^{n_{2}}\text{, }n_{2}\in \mathrm{Z}\text{, }b=\cos(\frac{\arcsin(\frac{3}{5})}{2})\left(-1\right)^{n_{2}}\text{, }n_{2}\in \mathrm{Z}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}