Solve for x, y, z, a
a=-35
Share
Copied to clipboard
6\left(x+3\right)-3\left(x+3\right)-10\left(2x-5\right)+60=0
Consider the first equation. Multiply both sides of the equation by 30, the least common multiple of 5,10,3.
6x+18-3\left(x+3\right)-10\left(2x-5\right)+60=0
Use the distributive property to multiply 6 by x+3.
6x+18-3x-9-10\left(2x-5\right)+60=0
Use the distributive property to multiply -3 by x+3.
3x+18-9-10\left(2x-5\right)+60=0
Combine 6x and -3x to get 3x.
3x+9-10\left(2x-5\right)+60=0
Subtract 9 from 18 to get 9.
3x+9-20x+50+60=0
Use the distributive property to multiply -10 by 2x-5.
-17x+9+50+60=0
Combine 3x and -20x to get -17x.
-17x+59+60=0
Add 9 and 50 to get 59.
-17x+119=0
Add 59 and 60 to get 119.
-17x=-119
Subtract 119 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-119}{-17}
Divide both sides by -17.
x=7
Divide -119 by -17 to get 7.
y=5\left(2\times 7-3\right)-6\left(1+2\times 7\right)
Consider the second equation. Insert the known values of variables into the equation.
y=5\left(14-3\right)-6\left(1+2\times 7\right)
Multiply 2 and 7 to get 14.
y=5\times 11-6\left(1+2\times 7\right)
Subtract 3 from 14 to get 11.
y=55-6\left(1+2\times 7\right)
Multiply 5 and 11 to get 55.
y=55-6\left(1+14\right)
Multiply 2 and 7 to get 14.
y=55-6\times 15
Add 1 and 14 to get 15.
y=55-90
Multiply -6 and 15 to get -90.
y=-35
Subtract 90 from 55 to get -35.
z=-35
Consider the third equation. Insert the known values of variables into the equation.
a=-35
Consider the fourth equation. Insert the known values of variables into the equation.
x=7 y=-35 z=-35 a=-35
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}