Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

35x\times \frac{3}{5}+35x\times \frac{2}{7}+35\times 9=13x
Consider the first equation. Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 35x, the least common multiple of 5,7,x,35.
21x+35x\times \frac{2}{7}+35\times 9=13x
Multiply 35 and \frac{3}{5} to get 21.
21x+10x+35\times 9=13x
Multiply 35 and \frac{2}{7} to get 10.
31x+35\times 9=13x
Combine 21x and 10x to get 31x.
31x+315=13x
Multiply 35 and 9 to get 315.
31x+315-13x=0
Subtract 13x from both sides.
18x+315=0
Combine 31x and -13x to get 18x.
18x=-315
Subtract 315 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-315}{18}
Divide both sides by 18.
x=-\frac{35}{2}
Reduce the fraction \frac{-315}{18} to lowest terms by extracting and canceling out 9.
y=-\frac{35}{2}
Consider the second equation. Insert the known values of variables into the equation.
z=-\frac{35}{2}
Consider the third equation. Insert the known values of variables into the equation.
x=-\frac{35}{2} y=-\frac{35}{2} z=-\frac{35}{2}
The system is now solved.