Solve for x, y, z
z=33
Share
Copied to clipboard
5\left(3x-1\right)-10\left(x-1\right)=4\left(x-2\right)-20
Consider the first equation. Multiply both sides of the equation by 20, the least common multiple of 4,2,5.
15x-5-10\left(x-1\right)=4\left(x-2\right)-20
Use the distributive property to multiply 5 by 3x-1.
15x-5-10x+10=4\left(x-2\right)-20
Use the distributive property to multiply -10 by x-1.
5x-5+10=4\left(x-2\right)-20
Combine 15x and -10x to get 5x.
5x+5=4\left(x-2\right)-20
Add -5 and 10 to get 5.
5x+5=4x-8-20
Use the distributive property to multiply 4 by x-2.
5x+5=4x-28
Subtract 20 from -8 to get -28.
5x+5-4x=-28
Subtract 4x from both sides.
x+5=-28
Combine 5x and -4x to get x.
x=-28-5
Subtract 5 from both sides.
x=-33
Subtract 5 from -28 to get -33.
y=3-2\left(-33\right)-3-33
Consider the second equation. Insert the known values of variables into the equation.
y=3+66-3-33
Multiply -2 and -33 to get 66.
y=69-3-33
Add 3 and 66 to get 69.
y=66-33
Subtract 3 from 69 to get 66.
y=33
Subtract 33 from 66 to get 33.
z=33
Consider the third equation. Insert the known values of variables into the equation.
x=-33 y=33 z=33
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}