Solve for f, g, h
h = \frac{12}{7} = 1\frac{5}{7} \approx 1.714285714
Share
Copied to clipboard
12=12f\times \frac{1}{3}+12f\times \frac{1}{4}
Consider the first equation. Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12f, the least common multiple of f,3,4.
12=4f+12f\times \frac{1}{4}
Multiply 12 and \frac{1}{3} to get 4.
12=4f+3f
Multiply 12 and \frac{1}{4} to get 3.
12=7f
Combine 4f and 3f to get 7f.
7f=12
Swap sides so that all variable terms are on the left hand side.
f=\frac{12}{7}
Divide both sides by 7.
g=\frac{12}{7}
Consider the second equation. Insert the known values of variables into the equation.
h=\frac{12}{7}
Consider the third equation. Insert the known values of variables into the equation.
f=\frac{12}{7} g=\frac{12}{7} h=\frac{12}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}