Solve for x, y, z
z=8.382
Share
Copied to clipboard
x\times \frac{1}{25.4}=0.33
Consider the first equation. Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x\times \frac{10}{254}=0.33
Expand \frac{1}{25.4} by multiplying both numerator and the denominator by 10.
x\times \frac{5}{127}=0.33
Reduce the fraction \frac{10}{254} to lowest terms by extracting and canceling out 2.
x=0.33\times \frac{127}{5}
Multiply both sides by \frac{127}{5}, the reciprocal of \frac{5}{127}.
x=\frac{4191}{500}
Multiply 0.33 and \frac{127}{5} to get \frac{4191}{500}.
y=\frac{4191}{500}
Consider the second equation. Insert the known values of variables into the equation.
z=\frac{4191}{500}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{4191}{500} y=\frac{4191}{500} z=\frac{4191}{500}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}