Solve for x, y, z, a, b, c, d
d = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Share
Copied to clipboard
x-\frac{2}{3}=0
Consider the first equation. Multiply both sides by 2, the reciprocal of \frac{1}{2}. Anything times zero gives zero.
x=\frac{2}{3}
Add \frac{2}{3} to both sides. Anything plus zero gives itself.
y=\frac{2}{\frac{1\times 2+1}{2}}
Consider the second equation. Multiply 2 and 1 to get 2.
y=\frac{2}{\frac{2+1}{2}}
Multiply 1 and 2 to get 2.
y=\frac{2}{\frac{3}{2}}
Add 2 and 1 to get 3.
y=2\times \frac{2}{3}
Divide 2 by \frac{3}{2} by multiplying 2 by the reciprocal of \frac{3}{2}.
y=\frac{4}{3}
Multiply 2 and \frac{2}{3} to get \frac{4}{3}.
z=\frac{4}{3}
Consider the third equation. Insert the known values of variables into the equation.
a=\frac{4}{3}
Consider the fourth equation. Insert the known values of variables into the equation.
b=\frac{4}{3}
Consider the fifth equation. Insert the known values of variables into the equation.
c=\frac{4}{3}
Consider the equation (6). Insert the known values of variables into the equation.
d=\frac{4}{3}
Consider the equation (7). Insert the known values of variables into the equation.
x=\frac{2}{3} y=\frac{4}{3} z=\frac{4}{3} a=\frac{4}{3} b=\frac{4}{3} c=\frac{4}{3} d=\frac{4}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}