Solve for x, y, z
z = \frac{245625}{11} = 22329\frac{6}{11} \approx 22329.545454545
Share
Copied to clipboard
-11x+3200=-9
Consider the first equation. Multiply both sides by 9.
-11x=-9-3200
Subtract 3200 from both sides.
-11x=-3209
Subtract 3200 from -9 to get -3209.
x=\frac{-3209}{-11}
Divide both sides by -11.
x=\frac{3209}{11}
Fraction \frac{-3209}{-11} can be simplified to \frac{3209}{11} by removing the negative sign from both the numerator and the denominator.
y=75\times \frac{3209}{11}+450
Consider the second equation. Insert the known values of variables into the equation.
y=\frac{240675}{11}+450
Multiply 75 and \frac{3209}{11} to get \frac{240675}{11}.
y=\frac{245625}{11}
Add \frac{240675}{11} and 450 to get \frac{245625}{11}.
z=\frac{245625}{11}
Consider the third equation. Insert the known values of variables into the equation.
x=\frac{3209}{11} y=\frac{245625}{11} z=\frac{245625}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}