Solve for y, x
x=2100
y=1850
Graph
Share
Copied to clipboard
y-x=-250
Consider the first equation. Subtract x from both sides.
y-x=-250,0.06y+0.09x=300
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=-250
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y=x-250
Add x to both sides of the equation.
0.06\left(x-250\right)+0.09x=300
Substitute x-250 for y in the other equation, 0.06y+0.09x=300.
0.06x-15+0.09x=300
Multiply 0.06 times x-250.
0.15x-15=300
Add \frac{3x}{50} to \frac{9x}{100}.
0.15x=315
Add 15 to both sides of the equation.
x=2100
Divide both sides of the equation by 0.15, which is the same as multiplying both sides by the reciprocal of the fraction.
y=2100-250
Substitute 2100 for x in y=x-250. Because the resulting equation contains only one variable, you can solve for y directly.
y=1850
Add -250 to 2100.
y=1850,x=2100
The system is now solved.
y-x=-250
Consider the first equation. Subtract x from both sides.
y-x=-250,0.06y+0.09x=300
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\0.06&0.09\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-250\\300\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\0.06&0.09\end{matrix}\right))\left(\begin{matrix}1&-1\\0.06&0.09\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.06&0.09\end{matrix}\right))\left(\begin{matrix}-250\\300\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\0.06&0.09\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.06&0.09\end{matrix}\right))\left(\begin{matrix}-250\\300\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.06&0.09\end{matrix}\right))\left(\begin{matrix}-250\\300\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{0.09}{0.09-\left(-0.06\right)}&-\frac{-1}{0.09-\left(-0.06\right)}\\-\frac{0.06}{0.09-\left(-0.06\right)}&\frac{1}{0.09-\left(-0.06\right)}\end{matrix}\right)\left(\begin{matrix}-250\\300\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0.6&\frac{20}{3}\\-0.4&\frac{20}{3}\end{matrix}\right)\left(\begin{matrix}-250\\300\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0.6\left(-250\right)+\frac{20}{3}\times 300\\-0.4\left(-250\right)+\frac{20}{3}\times 300\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1850\\2100\end{matrix}\right)
Do the arithmetic.
y=1850,x=2100
Extract the matrix elements y and x.
y-x=-250
Consider the first equation. Subtract x from both sides.
y-x=-250,0.06y+0.09x=300
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.06y+0.06\left(-1\right)x=0.06\left(-250\right),0.06y+0.09x=300
To make y and \frac{3y}{50} equal, multiply all terms on each side of the first equation by 0.06 and all terms on each side of the second by 1.
0.06y-0.06x=-15,0.06y+0.09x=300
Simplify.
0.06y-0.06y-0.06x-0.09x=-15-300
Subtract 0.06y+0.09x=300 from 0.06y-0.06x=-15 by subtracting like terms on each side of the equal sign.
-0.06x-0.09x=-15-300
Add \frac{3y}{50} to -\frac{3y}{50}. Terms \frac{3y}{50} and -\frac{3y}{50} cancel out, leaving an equation with only one variable that can be solved.
-0.15x=-15-300
Add -\frac{3x}{50} to -\frac{9x}{100}.
-0.15x=-315
Add -15 to -300.
x=2100
Divide both sides of the equation by -0.15, which is the same as multiplying both sides by the reciprocal of the fraction.
0.06y+0.09\times 2100=300
Substitute 2100 for x in 0.06y+0.09x=300. Because the resulting equation contains only one variable, you can solve for y directly.
0.06y+189=300
Multiply 0.09 times 2100.
0.06y=111
Subtract 189 from both sides of the equation.
y=1850
Divide both sides of the equation by 0.06, which is the same as multiplying both sides by the reciprocal of the fraction.
y=1850,x=2100
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}