Solve for y, k
y = \frac{196}{53} = 3\frac{37}{53} \approx 3.698113208
k=\frac{2}{7}\approx 0.285714286
Share
Copied to clipboard
y=\frac{14\times \frac{2}{7}}{\left(\frac{2}{7}\right)^{2}+1}
Consider the first equation. Insert the known values of variables into the equation.
y=\frac{4}{\left(\frac{2}{7}\right)^{2}+1}
Multiply 14 and \frac{2}{7} to get 4.
y=\frac{4}{\frac{4}{49}+1}
Calculate \frac{2}{7} to the power of 2 and get \frac{4}{49}.
y=\frac{4}{\frac{53}{49}}
Add \frac{4}{49} and 1 to get \frac{53}{49}.
y=4\times \frac{49}{53}
Divide 4 by \frac{53}{49} by multiplying 4 by the reciprocal of \frac{53}{49}.
y=\frac{196}{53}
Multiply 4 and \frac{49}{53} to get \frac{196}{53}.
y=\frac{196}{53} k=\frac{2}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}