Solve for x, y
x=\frac{7}{13}\approx 0.538461538
y = \frac{42}{13} = 3\frac{3}{13} \approx 3.230769231
Graph
Share
Copied to clipboard
x-11\left(y-3\right)=-2,x+2y=7
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x-11\left(y-3\right)=-2
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x-11y+33=-2
Multiply -11 times y-3.
x-11y=-35
Subtract 33 from both sides of the equation.
x=11y-35
Add 11y to both sides of the equation.
11y-35+2y=7
Substitute 11y-35 for x in the other equation, x+2y=7.
13y-35=7
Add 11y to 2y.
13y=42
Add 35 to both sides of the equation.
y=\frac{42}{13}
Divide both sides by 13.
x=11\times \frac{42}{13}-35
Substitute \frac{42}{13} for y in x=11y-35. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{462}{13}-35
Multiply 11 times \frac{42}{13}.
x=\frac{7}{13}
Add -35 to \frac{462}{13}.
x=\frac{7}{13},y=\frac{42}{13}
The system is now solved.
x-11\left(y-3\right)=-2,x+2y=7
Put the equations in standard form and then use matrices to solve the system of equations.
x-11\left(y-3\right)=-2
Simplify the first equation to put it in standard form.
x-11y+33=-2
Multiply -11 times y-3.
x-11y=-35
Subtract 33 from both sides of the equation.
\left(\begin{matrix}1&-11\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-35\\7\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-11\\1&2\end{matrix}\right))\left(\begin{matrix}1&-11\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-11\\1&2\end{matrix}\right))\left(\begin{matrix}-35\\7\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-11\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-11\\1&2\end{matrix}\right))\left(\begin{matrix}-35\\7\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-11\\1&2\end{matrix}\right))\left(\begin{matrix}-35\\7\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-11\right)}&-\frac{-11}{2-\left(-11\right)}\\-\frac{1}{2-\left(-11\right)}&\frac{1}{2-\left(-11\right)}\end{matrix}\right)\left(\begin{matrix}-35\\7\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{11}{13}\\-\frac{1}{13}&\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}-35\\7\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\left(-35\right)+\frac{11}{13}\times 7\\-\frac{1}{13}\left(-35\right)+\frac{1}{13}\times 7\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{13}\\\frac{42}{13}\end{matrix}\right)
Do the arithmetic.
x=\frac{7}{13},y=\frac{42}{13}
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}