Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\times 2-y=0
Consider the first equation. Subtract y from both sides.
3x-18-y=-18
Consider the second equation. Subtract y from both sides.
3x-y=-18+18
Add 18 to both sides.
3x-y=0
Add -18 and 18 to get 0.
2x-y=0,3x-y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=y
Add y to both sides of the equation.
x=\frac{1}{2}y
Divide both sides by 2.
3\times \frac{1}{2}y-y=0
Substitute \frac{y}{2} for x in the other equation, 3x-y=0.
\frac{3}{2}y-y=0
Multiply 3 times \frac{y}{2}.
\frac{1}{2}y=0
Add \frac{3y}{2} to -y.
y=0
Multiply both sides by 2.
x=0
Substitute 0 for y in x=\frac{1}{2}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=0,y=0
The system is now solved.
x\times 2-y=0
Consider the first equation. Subtract y from both sides.
3x-18-y=-18
Consider the second equation. Subtract y from both sides.
3x-y=-18+18
Add 18 to both sides.
3x-y=0
Add -18 and 18 to get 0.
2x-y=0,3x-y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&-1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}2&-1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-1\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-3\right)}&-\frac{-1}{2\left(-1\right)-\left(-3\right)}\\-\frac{3}{2\left(-1\right)-\left(-3\right)}&\frac{2}{2\left(-1\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\-3&2\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Multiply the matrices.
x=0,y=0
Extract the matrix elements x and y.
x\times 2-y=0
Consider the first equation. Subtract y from both sides.
3x-18-y=-18
Consider the second equation. Subtract y from both sides.
3x-y=-18+18
Add 18 to both sides.
3x-y=0
Add -18 and 18 to get 0.
2x-y=0,3x-y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x-3x-y+y=0
Subtract 3x-y=0 from 2x-y=0 by subtracting like terms on each side of the equal sign.
2x-3x=0
Add -y to y. Terms -y and y cancel out, leaving an equation with only one variable that can be solved.
-x=0
Add 2x to -3x.
x=0
Divide both sides by -1.
-y=0
Substitute 0 for x in 3x-y=0. Because the resulting equation contains only one variable, you can solve for y directly.
y=0
Divide both sides by -1.
x=0,y=0
The system is now solved.