Solve for x, y
x=352
y = \frac{15920}{9} = 1768\frac{8}{9} \approx 1768.888888889
Graph
Share
Copied to clipboard
x=352
Consider the first equation. Add 2 and 350 to get 352.
0.65\times 352+0.09y=388
Consider the second equation. Insert the known values of variables into the equation.
228.8+0.09y=388
Multiply 0.65 and 352 to get 228.8.
0.09y=388-228.8
Subtract 228.8 from both sides.
0.09y=159.2
Subtract 228.8 from 388 to get 159.2.
y=\frac{159.2}{0.09}
Divide both sides by 0.09.
y=\frac{15920}{9}
Expand \frac{159.2}{0.09} by multiplying both numerator and the denominator by 100.
x=352 y=\frac{15920}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}