Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=10000,0.05x+0.07y=680
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=10000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+10000
Subtract y from both sides of the equation.
0.05\left(-y+10000\right)+0.07y=680
Substitute -y+10000 for x in the other equation, 0.05x+0.07y=680.
-0.05y+500+0.07y=680
Multiply 0.05 times -y+10000.
0.02y+500=680
Add -\frac{y}{20} to \frac{7y}{100}.
0.02y=180
Subtract 500 from both sides of the equation.
y=9000
Multiply both sides by 50.
x=-9000+10000
Substitute 9000 for y in x=-y+10000. Because the resulting equation contains only one variable, you can solve for x directly.
x=1000
Add 10000 to -9000.
x=1000,y=9000
The system is now solved.
x+y=10000,0.05x+0.07y=680
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\0.05&0.07\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10000\\680\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\0.05&0.07\end{matrix}\right))\left(\begin{matrix}1&1\\0.05&0.07\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.05&0.07\end{matrix}\right))\left(\begin{matrix}10000\\680\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\0.05&0.07\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.05&0.07\end{matrix}\right))\left(\begin{matrix}10000\\680\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.05&0.07\end{matrix}\right))\left(\begin{matrix}10000\\680\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.07}{0.07-0.05}&-\frac{1}{0.07-0.05}\\-\frac{0.05}{0.07-0.05}&\frac{1}{0.07-0.05}\end{matrix}\right)\left(\begin{matrix}10000\\680\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3.5&-50\\-2.5&50\end{matrix}\right)\left(\begin{matrix}10000\\680\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3.5\times 10000-50\times 680\\-2.5\times 10000+50\times 680\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1000\\9000\end{matrix}\right)
Do the arithmetic.
x=1000,y=9000
Extract the matrix elements x and y.
x+y=10000,0.05x+0.07y=680
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.05x+0.05y=0.05\times 10000,0.05x+0.07y=680
To make x and \frac{x}{20} equal, multiply all terms on each side of the first equation by 0.05 and all terms on each side of the second by 1.
0.05x+0.05y=500,0.05x+0.07y=680
Simplify.
0.05x-0.05x+0.05y-0.07y=500-680
Subtract 0.05x+0.07y=680 from 0.05x+0.05y=500 by subtracting like terms on each side of the equal sign.
0.05y-0.07y=500-680
Add \frac{x}{20} to -\frac{x}{20}. Terms \frac{x}{20} and -\frac{x}{20} cancel out, leaving an equation with only one variable that can be solved.
-0.02y=500-680
Add \frac{y}{20} to -\frac{7y}{100}.
-0.02y=-180
Add 500 to -680.
y=9000
Multiply both sides by -50.
0.05x+0.07\times 9000=680
Substitute 9000 for y in 0.05x+0.07y=680. Because the resulting equation contains only one variable, you can solve for x directly.
0.05x+630=680
Multiply 0.07 times 9000.
0.05x=50
Subtract 630 from both sides of the equation.
x=1000
Multiply both sides by 20.
x=1000,y=9000
The system is now solved.