Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

y=x+167 x+y+z=3243 10x+20y+30z=62710
Reorder the equations.
x+x+167+z=3243 10x+20\left(x+167\right)+30z=62710
Substitute x+167 for y in the second and third equation.
x=1538-\frac{1}{2}z z=1979-x
Solve these equations for x and z respectively.
z=1979-\left(1538-\frac{1}{2}z\right)
Substitute 1538-\frac{1}{2}z for x in the equation z=1979-x.
z=882
Solve z=1979-\left(1538-\frac{1}{2}z\right) for z.
x=1538-\frac{1}{2}\times 882
Substitute 882 for z in the equation x=1538-\frac{1}{2}z.
x=1097
Calculate x from x=1538-\frac{1}{2}\times 882.
y=1097+167
Substitute 1097 for x in the equation y=x+167.
y=1264
Calculate y from y=1097+167.
x=1097 y=1264 z=882
The system is now solved.