Solve for f, z
z=7+i
f=69+17i
Share
Copied to clipboard
f\left(7+i\right)=\left(10+i\right)\left(7+i\right)^{2}
Consider the first equation. Insert the known values of variables into the equation.
f\left(7+i\right)=\left(10+i\right)\left(48+14i\right)
Calculate 7+i to the power of 2 and get 48+14i.
f\left(7+i\right)=466+188i
Multiply 10+i and 48+14i to get 466+188i.
f=\frac{466+188i}{7+i}
Divide both sides by 7+i.
f=\frac{\left(466+188i\right)\left(7-i\right)}{\left(7+i\right)\left(7-i\right)}
Multiply both numerator and denominator of \frac{466+188i}{7+i} by the complex conjugate of the denominator, 7-i.
f=\frac{3450+850i}{50}
Do the multiplications in \frac{\left(466+188i\right)\left(7-i\right)}{\left(7+i\right)\left(7-i\right)}.
f=69+17i
Divide 3450+850i by 50 to get 69+17i.
f=69+17i z=7+i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}