Solve for f, x
x=350.08
f = -\frac{101478840138711}{45837325148672} = -2\frac{9804189841367}{45837325148672} \approx -2.213890968
Share
Copied to clipboard
f\times 350.08=\frac{2\left(200-350.08\right)^{2}}{350.08^{3}}-\frac{1}{2}\times 350.08-600
Consider the first equation. Insert the known values of variables into the equation.
f\times 350.08=\frac{2\left(-150.08\right)^{2}}{350.08^{3}}-\frac{1}{2}\times 350.08-600
Subtract 350.08 from 200 to get -150.08.
f\times 350.08=\frac{2\times 22524.0064}{350.08^{3}}-\frac{1}{2}\times 350.08-600
Calculate -150.08 to the power of 2 and get 22524.0064.
f\times 350.08=\frac{45048.0128}{350.08^{3}}-\frac{1}{2}\times 350.08-600
Multiply 2 and 22524.0064 to get 45048.0128.
f\times 350.08=\frac{45048.0128}{42904406.720512}-\frac{1}{2}\times 350.08-600
Calculate 350.08 to the power of 3 and get 42904406.720512.
f\times 350.08=\frac{45048012800}{42904406720512}-\frac{1}{2}\times 350.08-600
Expand \frac{45048.0128}{42904406.720512} by multiplying both numerator and the denominator by 1000000.
f\times 350.08=\frac{5499025}{5237354336}-\frac{1}{2}\times 350.08-600
Reduce the fraction \frac{45048012800}{42904406720512} to lowest terms by extracting and canceling out 8192.
f\times 350.08=\frac{5499025}{5237354336}-\frac{4376}{25}-600
Multiply -\frac{1}{2} and 350.08 to get -\frac{4376}{25}.
f\times 350.08=-\frac{22918525098711}{130933858400}-600
Subtract \frac{4376}{25} from \frac{5499025}{5237354336} to get -\frac{22918525098711}{130933858400}.
f\times 350.08=-\frac{101478840138711}{130933858400}
Subtract 600 from -\frac{22918525098711}{130933858400} to get -\frac{101478840138711}{130933858400}.
f=\frac{-\frac{101478840138711}{130933858400}}{350.08}
Divide both sides by 350.08.
f=\frac{-101478840138711}{130933858400\times 350.08}
Express \frac{-\frac{101478840138711}{130933858400}}{350.08} as a single fraction.
f=\frac{-101478840138711}{45837325148672}
Multiply 130933858400 and 350.08 to get 45837325148672.
f=-\frac{101478840138711}{45837325148672}
Fraction \frac{-101478840138711}{45837325148672} can be rewritten as -\frac{101478840138711}{45837325148672} by extracting the negative sign.
f=-\frac{101478840138711}{45837325148672} x=350.08
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}