Skip to main content
Solve for f, x
Tick mark Image

Similar Problems from Web Search

Share

f\times 350.08=\frac{2\left(200-350.08\right)^{2}}{350.08^{3}}-\frac{1}{2}\times 350.08-600
Consider the first equation. Insert the known values of variables into the equation.
f\times 350.08=\frac{2\left(-150.08\right)^{2}}{350.08^{3}}-\frac{1}{2}\times 350.08-600
Subtract 350.08 from 200 to get -150.08.
f\times 350.08=\frac{2\times 22524.0064}{350.08^{3}}-\frac{1}{2}\times 350.08-600
Calculate -150.08 to the power of 2 and get 22524.0064.
f\times 350.08=\frac{45048.0128}{350.08^{3}}-\frac{1}{2}\times 350.08-600
Multiply 2 and 22524.0064 to get 45048.0128.
f\times 350.08=\frac{45048.0128}{42904406.720512}-\frac{1}{2}\times 350.08-600
Calculate 350.08 to the power of 3 and get 42904406.720512.
f\times 350.08=\frac{45048012800}{42904406720512}-\frac{1}{2}\times 350.08-600
Expand \frac{45048.0128}{42904406.720512} by multiplying both numerator and the denominator by 1000000.
f\times 350.08=\frac{5499025}{5237354336}-\frac{1}{2}\times 350.08-600
Reduce the fraction \frac{45048012800}{42904406720512} to lowest terms by extracting and canceling out 8192.
f\times 350.08=\frac{5499025}{5237354336}-\frac{4376}{25}-600
Multiply -\frac{1}{2} and 350.08 to get -\frac{4376}{25}.
f\times 350.08=-\frac{22918525098711}{130933858400}-600
Subtract \frac{4376}{25} from \frac{5499025}{5237354336} to get -\frac{22918525098711}{130933858400}.
f\times 350.08=-\frac{101478840138711}{130933858400}
Subtract 600 from -\frac{22918525098711}{130933858400} to get -\frac{101478840138711}{130933858400}.
f=\frac{-\frac{101478840138711}{130933858400}}{350.08}
Divide both sides by 350.08.
f=\frac{-101478840138711}{130933858400\times 350.08}
Express \frac{-\frac{101478840138711}{130933858400}}{350.08} as a single fraction.
f=\frac{-101478840138711}{45837325148672}
Multiply 130933858400 and 350.08 to get 45837325148672.
f=-\frac{101478840138711}{45837325148672}
Fraction \frac{-101478840138711}{45837325148672} can be rewritten as -\frac{101478840138711}{45837325148672} by extracting the negative sign.
f=-\frac{101478840138711}{45837325148672} x=350.08
The system is now solved.