Solve for U, R_x
U=3
R_{x} = \frac{149900}{1501} = 99\frac{1301}{1501} \approx 99.866755496
Share
Copied to clipboard
3-\frac{3R_{x}}{R_{x}+100}-\frac{3}{2}=10^{-3}
Consider the first equation. Insert the known values of variables into the equation.
2\left(R_{x}+100\right)\times 3-2\times 3R_{x}-\left(R_{x}+100\right)\times 3=2\left(R_{x}+100\right)\times 10^{-3}
Variable R_{x} cannot be equal to -100 since division by zero is not defined. Multiply both sides of the equation by 2\left(R_{x}+100\right), the least common multiple of R_{x}+100,2.
\left(2R_{x}+200\right)\times 3-2\times 3R_{x}-\left(R_{x}+100\right)\times 3=2\left(R_{x}+100\right)\times 10^{-3}
Use the distributive property to multiply 2 by R_{x}+100.
6R_{x}+600-2\times 3R_{x}-\left(R_{x}+100\right)\times 3=2\left(R_{x}+100\right)\times 10^{-3}
Use the distributive property to multiply 2R_{x}+200 by 3.
6R_{x}+600-6R_{x}-\left(R_{x}+100\right)\times 3=2\left(R_{x}+100\right)\times 10^{-3}
Multiply -2 and 3 to get -6.
600-\left(R_{x}+100\right)\times 3=2\left(R_{x}+100\right)\times 10^{-3}
Combine 6R_{x} and -6R_{x} to get 0.
600-\left(3R_{x}+300\right)=2\left(R_{x}+100\right)\times 10^{-3}
Use the distributive property to multiply R_{x}+100 by 3.
600-3R_{x}-300=2\left(R_{x}+100\right)\times 10^{-3}
To find the opposite of 3R_{x}+300, find the opposite of each term.
300-3R_{x}=2\left(R_{x}+100\right)\times 10^{-3}
Subtract 300 from 600 to get 300.
300-3R_{x}=2\left(R_{x}+100\right)\times \frac{1}{1000}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
300-3R_{x}=\frac{1}{500}\left(R_{x}+100\right)
Multiply 2 and \frac{1}{1000} to get \frac{1}{500}.
300-3R_{x}=\frac{1}{500}R_{x}+\frac{1}{5}
Use the distributive property to multiply \frac{1}{500} by R_{x}+100.
300-3R_{x}-\frac{1}{500}R_{x}=\frac{1}{5}
Subtract \frac{1}{500}R_{x} from both sides.
300-\frac{1501}{500}R_{x}=\frac{1}{5}
Combine -3R_{x} and -\frac{1}{500}R_{x} to get -\frac{1501}{500}R_{x}.
-\frac{1501}{500}R_{x}=\frac{1}{5}-300
Subtract 300 from both sides.
-\frac{1501}{500}R_{x}=-\frac{1499}{5}
Subtract 300 from \frac{1}{5} to get -\frac{1499}{5}.
R_{x}=-\frac{1499}{5}\left(-\frac{500}{1501}\right)
Multiply both sides by -\frac{500}{1501}, the reciprocal of -\frac{1501}{500}.
R_{x}=\frac{149900}{1501}
Multiply -\frac{1499}{5} and -\frac{500}{1501} to get \frac{149900}{1501}.
U=3 R_{x}=\frac{149900}{1501}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}