Skip to main content
Solve for U, R_x
Tick mark Image

Similar Problems from Web Search

Share

3-\frac{3R_{x}}{R_{x}+100}-\frac{3}{2}=10^{-3}
Consider the first equation. Insert the known values of variables into the equation.
2\left(R_{x}+100\right)\times 3-2\times 3R_{x}-\left(R_{x}+100\right)\times 3=2\left(R_{x}+100\right)\times 10^{-3}
Variable R_{x} cannot be equal to -100 since division by zero is not defined. Multiply both sides of the equation by 2\left(R_{x}+100\right), the least common multiple of R_{x}+100,2.
\left(2R_{x}+200\right)\times 3-2\times 3R_{x}-\left(R_{x}+100\right)\times 3=2\left(R_{x}+100\right)\times 10^{-3}
Use the distributive property to multiply 2 by R_{x}+100.
6R_{x}+600-2\times 3R_{x}-\left(R_{x}+100\right)\times 3=2\left(R_{x}+100\right)\times 10^{-3}
Use the distributive property to multiply 2R_{x}+200 by 3.
6R_{x}+600-6R_{x}-\left(R_{x}+100\right)\times 3=2\left(R_{x}+100\right)\times 10^{-3}
Multiply -2 and 3 to get -6.
600-\left(R_{x}+100\right)\times 3=2\left(R_{x}+100\right)\times 10^{-3}
Combine 6R_{x} and -6R_{x} to get 0.
600-\left(3R_{x}+300\right)=2\left(R_{x}+100\right)\times 10^{-3}
Use the distributive property to multiply R_{x}+100 by 3.
600-3R_{x}-300=2\left(R_{x}+100\right)\times 10^{-3}
To find the opposite of 3R_{x}+300, find the opposite of each term.
300-3R_{x}=2\left(R_{x}+100\right)\times 10^{-3}
Subtract 300 from 600 to get 300.
300-3R_{x}=2\left(R_{x}+100\right)\times \frac{1}{1000}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
300-3R_{x}=\frac{1}{500}\left(R_{x}+100\right)
Multiply 2 and \frac{1}{1000} to get \frac{1}{500}.
300-3R_{x}=\frac{1}{500}R_{x}+\frac{1}{5}
Use the distributive property to multiply \frac{1}{500} by R_{x}+100.
300-3R_{x}-\frac{1}{500}R_{x}=\frac{1}{5}
Subtract \frac{1}{500}R_{x} from both sides.
300-\frac{1501}{500}R_{x}=\frac{1}{5}
Combine -3R_{x} and -\frac{1}{500}R_{x} to get -\frac{1501}{500}R_{x}.
-\frac{1501}{500}R_{x}=\frac{1}{5}-300
Subtract 300 from both sides.
-\frac{1501}{500}R_{x}=-\frac{1499}{5}
Subtract 300 from \frac{1}{5} to get -\frac{1499}{5}.
R_{x}=-\frac{1499}{5}\left(-\frac{500}{1501}\right)
Multiply both sides by -\frac{500}{1501}, the reciprocal of -\frac{1501}{500}.
R_{x}=\frac{149900}{1501}
Multiply -\frac{1499}{5} and -\frac{500}{1501} to get \frac{149900}{1501}.
U=3 R_{x}=\frac{149900}{1501}
The system is now solved.