Solve for x, y
x=8
y=3
Graph
Share
Copied to clipboard
4=2x-4y
Consider the first equation. Subtract 232 from 236 to get 4.
2x-4y=4
Swap sides so that all variable terms are on the left hand side.
232=20x+20y+4y
Consider the second equation. Use the distributive property to multiply 20 by x+y.
232=20x+24y
Combine 20y and 4y to get 24y.
20x+24y=232
Swap sides so that all variable terms are on the left hand side.
2x-4y=4,20x+24y=232
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-4y=4
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=4y+4
Add 4y to both sides of the equation.
x=\frac{1}{2}\left(4y+4\right)
Divide both sides by 2.
x=2y+2
Multiply \frac{1}{2} times 4+4y.
20\left(2y+2\right)+24y=232
Substitute 2+2y for x in the other equation, 20x+24y=232.
40y+40+24y=232
Multiply 20 times 2+2y.
64y+40=232
Add 40y to 24y.
64y=192
Subtract 40 from both sides of the equation.
y=3
Divide both sides by 64.
x=2\times 3+2
Substitute 3 for y in x=2y+2. Because the resulting equation contains only one variable, you can solve for x directly.
x=6+2
Multiply 2 times 3.
x=8
Add 2 to 6.
x=8,y=3
The system is now solved.
4=2x-4y
Consider the first equation. Subtract 232 from 236 to get 4.
2x-4y=4
Swap sides so that all variable terms are on the left hand side.
232=20x+20y+4y
Consider the second equation. Use the distributive property to multiply 20 by x+y.
232=20x+24y
Combine 20y and 4y to get 24y.
20x+24y=232
Swap sides so that all variable terms are on the left hand side.
2x-4y=4,20x+24y=232
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&-4\\20&24\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\232\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-4\\20&24\end{matrix}\right))\left(\begin{matrix}2&-4\\20&24\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\20&24\end{matrix}\right))\left(\begin{matrix}4\\232\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-4\\20&24\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\20&24\end{matrix}\right))\left(\begin{matrix}4\\232\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\20&24\end{matrix}\right))\left(\begin{matrix}4\\232\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{24}{2\times 24-\left(-4\times 20\right)}&-\frac{-4}{2\times 24-\left(-4\times 20\right)}\\-\frac{20}{2\times 24-\left(-4\times 20\right)}&\frac{2}{2\times 24-\left(-4\times 20\right)}\end{matrix}\right)\left(\begin{matrix}4\\232\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{16}&\frac{1}{32}\\-\frac{5}{32}&\frac{1}{64}\end{matrix}\right)\left(\begin{matrix}4\\232\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{16}\times 4+\frac{1}{32}\times 232\\-\frac{5}{32}\times 4+\frac{1}{64}\times 232\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\3\end{matrix}\right)
Do the arithmetic.
x=8,y=3
Extract the matrix elements x and y.
4=2x-4y
Consider the first equation. Subtract 232 from 236 to get 4.
2x-4y=4
Swap sides so that all variable terms are on the left hand side.
232=20x+20y+4y
Consider the second equation. Use the distributive property to multiply 20 by x+y.
232=20x+24y
Combine 20y and 4y to get 24y.
20x+24y=232
Swap sides so that all variable terms are on the left hand side.
2x-4y=4,20x+24y=232
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
20\times 2x+20\left(-4\right)y=20\times 4,2\times 20x+2\times 24y=2\times 232
To make 2x and 20x equal, multiply all terms on each side of the first equation by 20 and all terms on each side of the second by 2.
40x-80y=80,40x+48y=464
Simplify.
40x-40x-80y-48y=80-464
Subtract 40x+48y=464 from 40x-80y=80 by subtracting like terms on each side of the equal sign.
-80y-48y=80-464
Add 40x to -40x. Terms 40x and -40x cancel out, leaving an equation with only one variable that can be solved.
-128y=80-464
Add -80y to -48y.
-128y=-384
Add 80 to -464.
y=3
Divide both sides by -128.
20x+24\times 3=232
Substitute 3 for y in 20x+24y=232. Because the resulting equation contains only one variable, you can solve for x directly.
20x+72=232
Multiply 24 times 3.
20x=160
Subtract 72 from both sides of the equation.
x=8
Divide both sides by 20.
x=8,y=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}